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Utah Geosites showcases some of Utah’s spectacular geology, both 
little-known localities and sites seen by visitors to Utah’s many 
national and state parks and monuments. Th e geosites refl ect the 
interests of the many volunteers who wrote to share some of their 
favorite geologic sites. Th e list is eclectic and far from complete, 
and we hope that additional geosites will be added in the coming 
years. Th e Utah Geological Survey also maintains a list of geosites 
https://geology.utah.gov/apps/geosights/index.htm.

We thank the many authors for their geosite contributions, 
Utah Geological Association members who make annual UGA 
publications possible, and the American Association of Petroleum 
Geologists—Rocky Mountain Section Foundation for a generous 
grant for desktop publishing of these geosite papers.

Design and desktop publishing by Jenny Erickson, Graphic 
Designer, dutchiedesign.com, Salt Lake City, Utah.

Th is is an open-access article in which the Utah Geological 
Association permits unrestricted use, distribution, and reproduction 
of text and fi gures that are not noted as copyrighted, provided the 
original author and source are credited. See the Utah Geological 
Association website, www.utahgeology.org, and Creative Commons 
https://creativecommons.org/licenses/by/4.0/ for details.

Suggested citation for this geosite: 

Potter-McIntyre, S.L., 2019, Crystal Geyser—an unusual cold 
spring system, Grand County, in Milligan, M., Biek, R.F., 
Inkenbrandt, P., and Nielsen, P., editors, Utah Geosites: Utah 
Geological Association Publication 48, 6 p., https://doi.
org/10.31711/geosites.v1i1.63.

Presidents Message
I have had the pleasure of working with many diff erent geologists 
from all around the world. As I have traveled around Utah for 
work and pleasure, many times I have observed vehicles parked 
alongside the road with many people climbing around an outcrop 
or walking up a trail in a canyon. Whether these people are 
from Utah or from another state or country, they all are quick to 
mention to me how wonderful our geology is here in Utah.

Utah is at the junction of several diff erent geological provinces. 
We have the Basin and Range to the west and the Central Utah 
Hingeline and Th rust Belt down the middle. Th e Uinta Mountains 
have outcrops of some of the oldest sedimentary rock in Utah. 
Utah also has its share of young cinder cones and basaltic lava 
fl ows, and ancient laccoliths, stratovolcanoes, and plutonic rocks. 
Th e general public comes to Utah to experience our wonderful 
scenic geology throughout our state and national parks. Driving 
between our national and state parks is a breathtaking experience.

Th e “Utah Geosites” has been a great undertaking by many people. 
I wanted to involve as many people as we could in preparing this 
guidebook. We have had great response from authors that visit or 
work here in the state. Several authors have more than one site that 
they consider unique and want to share with the rest of us. I wanted 
to make the guidebook usable by geologists wanting to see outcrops 
and to the informed general public. Th e articles are well written 
and the editorial work on this guidebook has been top quality.

I would like to personally thank Mark Milligan, Bob Biek, and 
Paul Inkenbrandt for their editorial work on this guidebook. 
Th is guidebook could not have happened without their support. 
I would like to thank Jenny Erickson for doing the great desktop 
publishing and the many authors and reviewers that helped 
prepare the articles. Your work has been outstanding and will 
certainly showcase the many great places and geology of Utah. 
Last, but not least, Th ank you to the American Association of 
Petroleum Geologists, Rocky Mountain Section Foundation for 
their fi nancial support for this publication.

Guidebook 48 will hopefully be a dynamic document with the 
potential to add additional “geosites” in the future. I hope more 
authors will volunteer articles on their favorite sites. I would like 
to fi ll the map with locations so that a person or family looking at 
the map or articles will see a great location to read about and visit.
Enjoy Guidebook 48 and enjoy the geology of Utah.

Peter J. Nielsen
2019 UGA President
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INTRODUCTION

Crystal Geyser is a cold carbon dioxide (CO2) geyser, part of a 
natural spring system along the Little Grand Wash fault south of 
Green River, Utah (figure 1). The spring system hosts a series of 
CO2-driven geysers and springs with active and fossil microbial 
mats and tufa deposits composed of carbonate and iron oxide and 
iron oxyhydroxide minerals (Potter-McIntyre and others, 2017; 
Knuth and Potter-McIntyre, 2018) (figure 2). Additionally, pro-
gressively older carbonate spring deposits crop out on some of the 
topographic highs in the area because these relatively erosion-re-
sistant deposits armor the paleo-land surface and slow down 
erosion (Shipton and others, 2004; Burnside, 2010) (figures 1 and 
2). Recent radiometric U-Th dating of carbonate terraces and em-
bedded veins reveal that CO2-charged fluid has constantly leaked 
to the surface for over 400 thousand years during the Pleistocene 
(Burnside, 2010). Crystal Geyser is a popular place for tourists, 
and it is not uncommon to see children playing in the spring.

The Crystal Geyser conduit is actually an abandoned petroleum 
exploration well through which water emanates. Surrounding the 
pipe are terraces of primarily carbonate mineral deposits (Ship-
ton and others, 2004; Potter-McIntyre and others, 2017; figure 2), 
dull to brilliant orange in color owing to minor iron precipitated 
from the spring water (figure 2). These terraces cascade down to 
the river, and include orange and green pools depending on the 
microbes within them—the green color indicates photosynthe-
sizing microbes. Larger terraces are composed of multiple small 
terracettes that are thought to be microbially-induced structures 
(Fouke and others, 2000). Also present around the drill pipe are 
collections of spheroidal mineral masses called pisoids. These are 
formed from agitation of minerals when the geyser erupts, causing 
spheres of precipitate to roll around and accrete new layers of 
carbonate minerals.

DIRECTIONS

From I-70 head south off the east Green River exit 164 and then 
turn east. Take a right at the sign for Crystal Geyser and follow the 
road. The road is a graded dirt road that is generally in good con-
dition. If it has been raining a lot, the road may be more difficult 
to navigate. About halfway between the hairpin turn and Crystal 
Geyser, an oil seep is just off the north side of the road.

GPS Location: N38.94 W110.14

Where Does the Water Come From?

The artesian spring water emanates from deep subsurface reser-
voirs along geologic faults that bound Salt Wash and Ten Mile 
graben (Jung and others, 2014; figure 3). The source reservoirs 
are Jurassic and Permian units that recharge at the San Rafael 
Swell to the west (Baer and Rigby, 1978; McPherson and Heath, 
2009; Dubacq and others, 2011; Kampman and others, 2014). The 
spring water is CO2- and methane-charged, saline, and of neutral 
pH (6.2-7; Shipton and others, 2004; Potter-McIntyre and others, 
2017). The source of CO2 is likely from decarbonation of Paleozoic 
carbonate rocks (Leadville Limestone) deep below the reservoir 
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Figure 1. Location map for Crystal Geyser. The yellow dotted line is the road. 
The dotted red line is the Little Grand Wash fault. Note that the rocks are tan 
and purple on the north side of the fault (the Jurassic rocks) and dark grey on the 
south side (the Cretaceous Mancos Shale). See figure 3 for stratigraphy. 
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Figure 2. Crystal Geyser features. A. Terraces of calcium carbonate and iron ox-
ide and iron oxyhydroxide minerals. B. Close up of pools of water at top of tufa 
terrace. Green pools contain photosynthetic organisms. C. Close up of terrace 
showing that the terraces are composed of small terracettes thought to be formed 
via the interaction of microbes during mineral precipitation. D. Spheroidal calci-
um carbonate mineral masses called pisoids. Photo is about 1 inch (2 cm) across. 
E. Drill pipe at Crystal Geyser is about 2 feet (1.5 m) high. F. 100,000-year-old 
tufa terrace atop paleo-land surface (yellow dotted line) just northeast of Crystal 
Geyser. Deposit is about 10 feet (3 m) thick. G. Two photos of Crystal Geyser 
erupting; left photo reproduced from https://fotospot.com/attractions/utah/
crystal-geyser; photo on the right from https://commons.wikimedia.org/w/index.
php?curid=4624320.
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(Shipton and others, 2004; Heath and others, 2009; Kampman 
and others, 2009; Probst and others, 2017). Th e tufa deposits are 
spatially dispersed and of variable volumes, suggesting that the 
location of CO2 leakage has varied over geologic time depending 
on the ability of the faults to transmit fl uid (permeabilty). Th e 
subsurface strata and faults exhibit strongly heterogeneous per-
meability owing to seismic activity, regional erosion, both mineral 
dissolution and precipitation, and changing fl uid fl ow volumes 
owing to variability in climate over time (Burnside, 2010; Burnside 
and others, 2013; Kampman and others, 2014).

How Does Crystal Geyser Work?

As mentioned in the introduction, Crystal Geyser formed via a 
human-drilled wellbore. An oil seep along the Little Grand Wash 
fault motivated drilling of the oil exploration well in 1935 (Baer 
and Rigby, 1978). Th e well never produced oil; however, CO2
dissolved and pressurized in the artesian aquifer at depth now 
discharges through the wellbore. Th is open conduit allows rapid 
depressurization and discharge as episodic geyser eruptions. Fol-
lowing each eruption, the wellbore again fi lls with water from the 
bottom up, with pressure building up during fi lling. Th e artesian 

pressure ultimately exceeds the rate of refi ll and causes another 
eruption (Watson and others, 2014). Th e cycle repeats, sometimes 
aft er a few hours and sometimes as long as a day or more between 
eruptions. Crystal Geyser’s eruption intervals, durations, and in-
tensities were at one time regular and consistent, but timing now is 
quite erratic, possibly related to vandalism. Tourists have dropped 
rocks and even reportedly dynamite into the geyser (Shipton and 
others, 2004). Other possible factors for variable eruption rates 
include seismic activity (Han and others, 2013) and/or interac-
tions between recharge rates and CO2 migration rates within the 
artesian aquifers (Kampman and others, 2014). 

SITE OF ACTIVE SCIENTIFIC RESEARCH

Crystal Geyser and its related spring system are subjects of active 
scientifi c research on topics ranging from global warming to the 
search for extraterrestrial life. Th is section discusses topics of 
recent research, including analysis of the geyser’s source aquifer 
as an analog to engineered carbon capture and sequestration, fol-
lowed by analysis of microbial life, interactions between microbes 
and mineral precipitation and how these processes off er insight 
regarding the search for life on Mars and beyond.

CO2 Sequestration

Global warming of our planet is attributable to the greenhouse 
eff ect, specifi cally increasing concentration of anthropogenic CO2
in the atmosphere that traps heat from solar radiation aft er it is re-
fl ected from the earth’s surface (e.g., Scheff er and others, 2006; Eby 
and others, 2009; Notz and Stroeve, 2016; Specht and others, 2016). 
Many ideas have been proposed to reduce CO2 emissions and the 
greenhouse eff ect, one of which is carbon capture and sequestration 
(e.g., Yang and others, 2008; Dai and others, 2013; Rahman and oth-
ers, 2017; Rackley, 2017). Carbon capture and sequestration (CCS) 
includes capture of CO2 at point sources such as cement plants and 
power plants, pressurizing and condensing it to a fl uid and then in-
jecting that fl uid into subsurface reservoirs. Th e fl uid that emanates 
at Crystal Geyser comes from a natural subsurface CO2 reservoir, 
but it leaks via migration upward along faults. Th e spring water de-
gasses its CO2 at the springs and geysers and eff ectively emits CO2
into the atmosphere, similar to industrial sources (but much smaller 
in volume). Understanding how this gas moves upward, how the 
emissions vary from site to site along faults, and what impedes or 
promotes fl ow are all very important parameters to know before 
CCS becomes a viable mitigation strategy for anthropogenic CO2
emissions (e.g., Shipton and others, 2005; Gouveia and Friedmann, 
2006; Burnside and others, 2013; Watson and others, 2014).

Astrobiology

Biosignatures are preserved fi ngerprints of past microbial life, 
which is the type of life scientists are searching for on Mars and 
icy moons within our solar system. Th ree types of biosignatures 
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Figure 3. Stratigraphy at Crystal Geyser. Th e photo is looking north-northwest 
(upriver). To the right, the exposed rocks are the middle Jurassic section. As one 
drives along the Little Grand Wash Fault (see fi gure 1), the grey rocks to the 
south of the road are the Cretaceous Mancos Shale. Th ese rocks are younger than 
the exposed rocks to the north of the fault and were downthrown relative to the 
Jurassic rocks. Th e well is in green and it extends 2627 feet below the surface. It 
is not cased, so the CO2-charged water fl ows into the pipe in both the Entrada 
Sandstone and the Navajo Sandstone reservoirs (Watson and others, 2014). 
However, this fault serves as a conduit for fl uid to fl ow upward to the surface 
and come out at Crystal Geyser, and for the oil seep you passed on the way in. 
Jurassic rocks are in yellow and the Cretaceous rocks in green.
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Icy Moons
Enceladus and Europa are high priority targets for future explora-
tion because of their subsurface oceans, which make them poten-
tially habitable environments (Hendrix and others, 2019). Th ese 
moons exhibit plumes (geysers) of subsurface water that erupts 
to the surface. Th ese plumes would make excellent targets for 
understanding the habitability of Enceladus and Europa because 
of their relative ease of accessibility. Studies of the microbial life 
deep within the Crystal Geyser waters have found a diverse popu-
lation with adaptations to reside in CO2-rich, saline environments 
(Santillan and others, 2015; Emerson and others, 2016; Probst and 
others, 2017; Knuth and Potter-McIntyre, 2019; fi gure 4). Ongoing 
studies seek to fi nd ways to determine habitability from the geyser 
plumes to help design future missions.

SUMMARY

Crystal Geyser is a fascinating example of a rare cold spring and 
geyser system. It is a treasure trove of scientifi c information, as 
well as just a fun and scenic place to visit. Spend some time hiking 
around and looking at the fault and the older tufa deposits, and 
think about how these formed throughout the millennia—and 
think about similar features on Mars and other celestial bodies in 
our solar system!
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