STRATIGRAPHY, SEDIMENTOLOGY, AND PALEOClimATIC PROXIES OF THE UPPER JURASSIC MORRISON FORMATION OF CENTRAL MONTANA

Dean R. Richmond
Fossil dinosaur bones were first discovered in the Upper Jurassic Morrison Formation near the town of Grass Range, Montana, in 1987. The first excavation commenced in 2003 by the Judith River Dinosaur Institute. The discovery of numerous fossil dinosaur bones and ongoing excavations prompted geologic research in the area. The photograph is of the 2017 Judith River Dinosaur Institute Quarry 3 excavation. The quarry is stratigraphically 28 m above the underlying Swift Formation. Large, disarticulated sauropod bones can be seen exhumed from a gray mudstone bed. Scales are 1 m and 0.5 m.
ABSTRACT

Since the discovery of dinosaurs in the late 19th century, the Upper Jurassic Morrison Formation has received considerable scholarly attention. However, the formation in central Montana needed to be sufficiently investigated. Recent dinosaur excavations from exposed Morrison strata on the southern flank of Spindletop dome near the town of Grass Range, Montana, prompted a review of the formation's geology, paleobotany, and paleoclimate. A review of historical stratigraphic measurements of the formation in Montana reveals a considerable variance in measured thicknesses. Stratigraphic measurements and regional log data indicate that the formation averages 71 m thick across central Montana. A new regional isopach map of the formation from well-log data illustrates a broad distributive fluvial system that migrated from the southwest toward the northeast. The formation is divided into two informal facies in the study area: lower and upper depositional facies. The lower depositional beds represent the mud-rich distal-most distributive fluvial facies that overlies the stranded muddy tidal flat of the Swift Formation. An increased sandstone:mudstone ratio and small isolated fluvial channel and crevasse splay beds indicate that the upper depositional beds represent the slow progression of the distributive fluvial system. However, a review of the regional field stratigraphy and well-log data did not provide a regional correlatable facies change to warrant subdividing the formation into members.

The stratigraphic positions and climatic interpretations for lithologic, faunal, and floral paleoclimatic proxies are specified. The compilation of climate proxy data from central Montana demonstrates that the climate in this region was wetter than in southern parts of the Morrison foreland basin. The climatic proxies signify that the environmental conditions were variable during the Late Jurassic in central Montana, displaying changing temperatures with mesic and xeric intervals of unknown duration.

INTRODUCTION

The Upper Jurassic Morrison Formation, an expansive sequence of terrestrial sediments deposited in foreland basins formed by the North America Cordilleran orogenic system, covers approximately 1.5 million km² of the North American Intermountain West (Dodson and others, 1980). The formation has been intensely studied for uranium (Turner-Peterson and Fishman, 1986), coal (Harris, 1966; Silverman and Harris, 1966), oil and gas (Norwood, 1965; Johnson, 2005), and dinosaurs (Foster, 2007). Since the Dinosaur Bone Wars of Othniel Charles Marsh and Edward Drinker Cope during the 1870s in the newly-opened American West, dinosaurs have been the focus of research and imagina-
tion. Dinosaurs have been discovered in every U.S. state where the Morrison Formation is exposed (Turner and Peterson, 1999).

The Morrison Formation is widespread in Montana, but formation surface exposures are limited (Woodruff and Foster, 2017). As a result, the Morrison and the dinosaurs of this northern part of the Jurassic foreland basin still need to be better understood. Early studies of the Morrison Formation in Montana mentioned dinosaur bones, bone fragments, gastroliths, freshwater bivalves, fossil plants, and seeds (Calvert, 1909; Fisher, 1909; Gardner and others, 1945; Brown, 1946; Vine, 1956; Knechtel, 1959). Moreover, in the Rocky Mountains of southwestern Montana, exposures of the Morrison strata have been investigated (Malone and Suttner, 1991; Cooley, 1993; Smith and others, 2006). However, the stratigraphy and sedimentology of the formation in central Montana have received inadequate attention. For example, recently newly discovered carbonate mound springs (i.e., tufa deposits) were described from the formation in central Montana (Richmond and others, 2021b); however, the stratigraphy and sedimentology of the region were only superficially discussed.

Montana is well known for its Cretaceous-age dinosaurs (Sahni, 1972; Giffen and others, 1988; Horner, 1988; Maxwell, 1993; White and others, 1998; Schott and others, 2009; Jackson and Varricchio, 2010, Wosik and others, 2017); limited studies, however, have focused on the Jurassic Morrison Formation and the dinosaurs of the northern part of the foreland basin (Turner and Peterson, 1999). A new diplodocoid dinosaur, *Suuwassea emilieae*, was discovered in the Morrison in south-central Montana and described (Harris and Dodson, 2004; Harris, 2006a, 2006b, 2007). Several papers describe and discuss the recently discovered *Hesperosaurus mjosi* (previously *Stegosaurus*) from Quarry 2 of the Judith River Dinosaur Institute (Saitta, 2015 [reported as the JDRI 5ES Quarry therein]; Maidment and others, 2016, 2018; Woodruff and others, 2019). Woodruff and Foster (2017) described a remarkably well-preserved Camarasaurus dinosaur discovered, excavated, and prepared by Judith River Dinosaur Institute from Quarry 1. Storrs and others (2012), in their taphonomic assessment of the Mother’s Day Quarry south of Billings, Montana, discuss an assemblage of 13 disarticulated subadult Diplodocus dinosaurs.

Various invertebrates have been discovered from different localities and described (Calver, 1909; Fisher, 1909; Yen, 1952; Evanof and others, 1998; Good, 2004; Richmond and others, 2017). Additionally, several fossil wood genera have recently been described from central Montana (Richmond and others, 2019b, 2019c, 2019d, 2021a, 2022).

GEOLOGIC SETTING

The field study area is located in the southeastern part of Fergus County, Montana (red box on figure 1A), whereas the subsurface interpretation extends into parts of the surrounding five counties (dashed box on figure 1A). Spindletop dome is a small anticline on the eastern flank of the Big Snowy Mountain uplift at the convergence of the Rocky Mountains and Great Plains provinces (figure 1A). The Morrison Formation is exposed along the southwestern hinge zone limb of Spindletop dome and in limited outcrops in the surrounding region (figure 1C). The Morrison Formation is stratigraphically underlain by the Middle to Upper Jurassic Ellis Group, comprising carbonate and clastic marine deposits of the Piper (Sawtooth), Rierdon, and Swift Formations. These marine formations were deposited during the inundation and withdrawal of the Late Jurassic Sundance sea. The mid-late Oxfordian Swif Formation consists of shallow-marine shelf sandstone deposits that accumulated during the final transgressive-regressive marine sequence (Imlay, 1954; Khalid, 1990; Fuentes and others, 2011). The Swif Formation can be divided into four parasequences based on well-log data (*n* = 212). The first three (offshore, lower, and upper shoreface) are open marine parasequences and coarsen upward (figure 2). The uppermost parasequence is a fining-upward, tidal facies (Richmond, 2022) (figure 3A). The tidal sequence sandstones are glauconitic, calcite-cemented, angular (0.91), well sorted (0.46), fine-grained (2.76 Φ) quartz arenites (*n* = 8; figures 4A and 4B). The northward retreat of the seaway established a flat planation surface on which the northern Morrison sediments were deposited (Richmond and others, 2019d). The J-5 unconformity (Pip-
iringos and O'Sullivan, 1978), present at the base of the Morrison Formation in most southern states, is absent in central Montana (Dekalb, 1922; Imlay, 1954; Uhlir and others, 1988; Khalid, 1990; Meyers and Schwartz, 1994; Fuentes and others, 2011; this study).

The Morrison Formation in central Montana is undifferentiated and consists of non-marine variegated illitic mudstones, thin carbonaceous shale, siltstone, sandstone, freshwater limestone, and coal beds. Rapid lateral transitions of terrestrial facies impede the cor-

Figure 1. (A) Montana regional index map with the main field study area of the Morrison Formation is highlighted by the red box near the small town of Grass Range in southeastern Fergus County. The dashed black box represents the area reviewed with subsurface well-log data. Well-log cross sections A–A' and B–B' are constructed across central Montana (figures 8 and 9). (B) Index map of the local research area including some of the physiographic structures referred to in the text. The main focus area is the southern and western limbs of a Laramide-age anticline known as Spindletop dome. The red box along Forest Grove Road designates a field stratigraphic measurement of the formation. The blue triangle represents the location of the partial stratigraphic measured section I (see figure 10). (C) Spindletop dome index map showing the stratigraphic measured sections A through H. Section I was measured near Button Butte (figure 1B). The trees represent the locations of the different fossil wood genera and the plant icon represents the location of the fossil plant site.
The Schye 1 well log (API 25045210180000) from the northeastern Judith Basin County displays the four marine parasequences of the Oxfordian Swift Formation that are present throughout central Montana. Subsea depths are measured in feet. Formation abbreviations are as follows: Rierdon (RRDN) and Swift (SWFT).

relation of strata over an extensive distance (Moritz, 1951). Unlike the well-exposed strata of the Morrison Formation of the Colorado Plateau, the Morrison strata of central Montana are usually covered by Great Plains mixed prairie grasses, dominated by western wheatgrass (Pascopyrum smithii) and Ponderosa pine (Pinus ponderosa).

On the Spindletop dome, six recently discovered dinosaur quarries are in various stages of excavation. (1) Quarry 1 (36 m above the Swift Formation), where an exceptionally preserved Camarasaurus (Woodruff and Foster, 2017) and disarticulated Hesperosaurus limb material (Woodruff and others, 2019) was discovered in 2003. (2) Quarry 2 (47 m above the Swift Formation), where a single disarticulated Macronarian sauropod and numerous disarticulated Hesperosaurus mjosi (Saitta, 2015) were excavated. Saitta (2015) interpreted the sauropod in Quarry 2 to be deposited after the stegosaurs. (3) Quarry 3 (28 m above the Swift) vertebrate fossil material is from an unknown sauropod (approximately 28 m above the Swift). (4) Quarry 4, 18.5 m stratigraphically above the Swift, has produced disarticulated material suggestive of Camptosaurus. (5) Quarry 5, 18.5 m stratigraphically above the Swift, and fossil material has...
been prepared by the Judith River Dinosaur Institute of Billings, Montana (see Saitta, 2015).

The K-1 unconformity (Pipiringos and O'Sullivan, 1978) separates the Upper Jurassic (Kimmeridgian/ Tithonian) Morrison Formation from the Lower Cretaceous (Aptian) Kootenai Formation. The amount of time represented by the unconformity is debated. Near Cut Bank, Montana (figure 1A), the pre-Kootenai erosion has removed the Morrison and Swift Formations (Cobban, 1945). Near Great Falls, Montana, the K-1 unconformity is angular (Harris, 1968). In the study area, thinly laminated, friable sediments are present beneath the basal Kootenai sandstone bed, which may represent sedimentation during some stage of the K-1 unconformity (figure 3B). The friable sandstone is a subangular (1.43), moderately sorted (0.70), medium-grained (1.64 Φ) quartz arenite with mudstone clasts (figure 4C). Geochronological data indicates that the missing time from the geologic record represents 20 Ma (Fuentes and others, 2011). However, high-resolution biostratigraphic data from terrestrial ostracodes suggests that the unconformity represents less than 10 Ma (Sames and others, 2008, 2010). The Kootenai Formation is a terrestrial sequence comprised of mudstone deposits, coarse- to medium-grained sandstone beds, and calcrite paleosols and is usually capped by interstratified limestone and dolomite units (Dupree, 2009). In north-central Montana, the Kootenai Formation's lower unit is the Cutbank Formation.
Sandstone Member, which consists of cross-bedded, coarse-to-medium-grained, quartz arenite sandstone that contains abundant black and gray chert grains (Porter and others, 1996). On the Sweetgrass Arch in northern Montana (figure 1A), the oil-producing basal sandstone is called the Sunburst sand (Collier, 1929).

The Cat Creek anticline oil targets are the Kootenai sandstone beds. The Cat Creek anticline is 64 km northeast of the study area (figure 1A). The nonproductive 3rd Cat Creek sandstone is stratigraphically equivalent to the basal sandstone and is an artesian water zone (Ames, 1993). Historically this sandstone bed has received various names; however, herein, it is referred to as the basal Kootenai sandstone bed. In the study area, the basal sandstone bed has a variable thickness but can be 30 m thick. There is a marked increase in polycrystalline and microcrystalline quartz grains in the sandstones with a visible distinct “salt and pepper” appearance in a hand sample. The basal Kootenai sandstone is a subrounded (2.27), well sorted (0.37), coarse- (0.96 Φ) to medium-grained (1.27 Φ) quartz arenite (n = 2; figure 4D).

METHODS

Stratigraphic measurements were made using a Jacob’s staff and surveyed using a Nikon DTM-322 total station. Following the conventional practice, the Morrison Formation includes the terrestrial mudstone, limestone, and sandstone strata between the underlying Swift Formation and K-1 unconformity (Cobban, 1945). In the field, the contact between the Swift and the Morrison Formations is further defined as the top surface of the uppermost glauconitic sandstone bed of the Swift Formation. In well logs, the top of the Swift is marked at the top of the Swift sandstone/Morrison mudstone demarcation resulting in a maximum thickness for the Morrison Formation. A gamma-ray (GR) > 75° API was used in the well logs to classify the log units as sandstone. The percentage of sandstone for the formation was derived from the formational well-log thickness divided by the total footage where the GR log > 75° API and multiplied by 100.

In the field, 68 sandstone beds were measured for thickness. Twenty-two additional sandstone beds had their width and thickness measured to determine the width:thickness ratio. Sandstones used for thin section analysis were obtained from the measured stratigraphic sections. In sections were prepared by Wagener Petrographic (Lindon, Utah) and were examined under a Zeiss petrographic microscope. Grain-size measurements for the well-cemented sandstones were produced using JMicroVision v1.27 from scaled digital thin-section images. A 300-framework grain point count was performed on each sandstone to determine a grain-size distribution. Standard petrology equations (Folk and Ward, 1957) were used to determine carbonate and sandstone classification, according to Dott (1964). In thin sections, monocrystalline quartz grains are defined as those consisting of a single crystal. Polycrystalline quartz grains have distinguishable crystal aggregates, whereas microcrystalline quartz (chert) grains have no distinguishable aggregate boundaries. One hundred framework grains were measured to determine a grain-size distribution. A random 100-grain count determined sandstone grain rounding from digital thin-section images. Grains were allocated to a rounding class: 0 - very angular, 1 - angular, 2 - subangular, 3 - subrounded, and 4 - rounded. The average grain roundness was calculated. Carbonates are designated using Folk’s classification scheme (Folk, 1959).
Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana
Richmond, D.R.

X-ray fluorescence (XRF) and X-ray diffraction (XRD) of Morrison Formation sandstones and mudstones were completed by the Bureau of Economic Geology, the University of Texas at Austin. A Thermo Scientific Niton XL3t Ultra Analyzer XRF gun was used to measure the elemental abundance of the silcrete, a newly discovered rhyolitic ash, and two rhyolite rocks samples from the Yellowstone Basin. The device measured each sample for 210 seconds. Forty-one elements were measured using the XRF tool. However, only the top nine element percentages are shown and account for greater than 99% of the elements. One hundred meso- and macropore diameters of the rhyolitic ash were measured using a digital caliper from hand samples. Additionally, 300 micropore diameters were measured using JMicroVision v1.27 from scaled digital thin-section images of the ash. All pore sizes are grouped according to the classification of Loucks and others (2012).

Kate Huntington ran the oxygen isotope analyses at the University of Washington, Seattle. Seven carbonate samples were analyzed, but only one produced viable temperature results. Palynology samples were processed by Vera Korasidis at the University of Melbourne, Australia, and were reviewed by Carol Hotton from the National Museum of Natural History.

MORRISON FORMATION STRATIGRAPHY

Stratigraphic measurements of the Morrison Formation have been defined previously for the more southern states. A historical review of the stratigraphic measurements in Montana is presented herein, followed by stratigraphic field measurements and regional well-log data from central Montana.

Historical Stratigraphic Measurements

The Morrison Formation, named initially by G.H. Eldridge (Emmons and others, 1896), was correlated to Montana by Fisher (1909). A historical review of the formation's measurements is provided herein to show the inconsistencies in the stratigraphic thicknesses of the Morrison Formation across the state. Many 20th-century researchers reported a formation thickness for their particular study area/region but provided no location details of their stratigraphic measurements (Freeman, 1919; Dekalb, 1922; Harris, 1966, 1968; Silverman and Harris, 1966, 1967; Suttner, 1969; Walker, 1974; Lindsey, 1980). In addition, in some references, the Morrison Formation has been combined with other formations for regional isopach maps (Francis, 1956, 1957; Peterson, 1966, 1981). The review is presented chronologically, reexamining the stratigraphy of central and southwestern Montana and the Williston Basin.

Figure 5. The Gorman 11-19 well log (API 25027211260000) from southeastern Fergus County. The well is 7 km southeast of the Judith River Dinosaur Institute Quarry 1 locality. The well log displays the formation thicknesses and log characteristics of the Swift and Morrison Formations and the basal sandstone bed of the Kootenai Formation. The type well log was the template for the well-derived Morrison formational thicknesses utilized for the central Montana isopach map (figure 7). Formation abbreviations are as follows: Rierdon (RRDN), Swift (SWFT), Morrison (MRSN), and Kootenai (KTNA).
tana prompted the first stratigraphic measurements in the state. Fisher (1909; A on figure 6) reported thicknesses from 24 to 36 m bordering the Little and Big Belt Mountains. Calvert (1909; B on figure 6) measured the Morrison Formation west of Garneill, Montana, and specified a thickness of 44 m. Lupton and Lee (1921) stated the formation is about 45 m thick east of Lewistown. However, they did not provide a location. Oil finds on the Cat Creek anticline (Lupton and Lee, 1921) and in the Devils' Basin in central Montana prompted Reeves (1927) to measure the formation in the region, reporting thicknesses between 60 and 90 m. Gardner and others (1945, 1946; C on figure 6) measured numerous stratigraphic sections across south-central and west-central Montana. Additional Morrison stratigraphic measurements can be examined in Gardner and others (1946), but only the data from their 1945 measurements are presented herein. Gardner (1950, 1959; D on figure 6) measured the formation along Forest Grove Road west of Grass Range, Montana. The
thicknesses are 73 and 68 m, respectively. Hadley and Milner (1953; E on figure 6) used well-log data (SP and resistivity curves) to determine the formational thickness from central Montana to south-central Saskatchewan, Canada. They noted that the formation was interbedded with glauconitic sandstones. Their data suggests they included the uppermost Swift Formation sandstone beds in their measurements. Miller (1954; F on figure 6) measured a detailed stratigraphic section northwest of Lewistown, Montana in the South Missouri Mountains. Scholten and others (1955; G on figure 6) measured the Morrison in the mountains around Lima, Montana. Hadley (1956; H on figure 6) estimated the Morrison to be 114 m from subsurface well logs from the Cat Creek anticline in central Petroleum County. It is thicker measurement likely includes strata from the uppermost Swift Formation. The tidal flat parasequence is challenging to delineate in well logs using only vintage SP and resistivity curves. Vine (1956; I on figure 6) measured the formation to be 49 m in central Judith Basin County. Knechtel (1959; J on figure 6) measured the formation thicknesses as 20 and 23 m south of the Little Rocky Mountains, which are east of Hays, Montana. However, Knechtel mentioned glauconitic sandstones were present in the Morrison Formation. This implies that Knechtel, too, may have included the uppermost Swift strata in the measurements.

In southwestern Montana, Moritz (1951, 1960; K on figure 6) measured three sections of the Morrison Formation with variable results: 22, 82, and 119 m. The two thickest sections each have a “salt and pepper” sandstone bed, one of thickness 11 m and one of thickness 23 m. The Kootenai basal sandstone bed is identified in the field by its characteristic “salt and pepper” appearance (Fraser and others, 1969; Walker, 1974; this study). Omitting the “salt and pepper” Kootenai sandstone beds from Moritz’s stratigraphic measurements yields formational thicknesses between 22 and 58 m. Christie (1961; L on figure 6) divided the formation into three informal lithologic units. The basal unit consists of 45 m of “thin-bedded shales, mudstone, limestones, siltstones, and a few sandstones.” The middle unit comprises 45 m of sandstone, and the upper unit includes 61 m of red sandy mudstone. The three units equate to a 151-m Morrison section. The lithologic description of the lower unit is analogous to the Morrison strata. However, the middle and upper units convincingly describe the basal sandstone bed and red (maroon-colored) mudstone beds of the Kootenai Formation. Therefore, Christie’s (1961) Morrison Formation measurement likely equates to 45 m. Fraser and others (1969; M on figure 6) measured 95 m of formation thickness at Cinnabar Mountain in Park County. Hobbs (1967; N on figure 6) divided the formation into three informal members northwest of Dillon, Montana, for a total of 236 m. From this description, it is difficult to discern which member should be correctly identified as the Morrison Formation. Hobbs defines the contact between the Morrison and Kootenai Formations as a gradational contact at the base of a gastropod-bearing biomicrite bed. A freshwater gastropod limestone bed has been described in the upper part of the Kootenai Formation (Cobban and others, 1976). Hobbs (1967) likely included most of the Kootenai Formation in the Morrison measurements. Malone and Suttner (1991; O on figure 6) made several Morrison stratigraphic measurements across the Willow Creek fault zone that was active during the Late Jurassic. Their measurements show the formation varies between 120 and 130 m thick in relation to the Willow Creek fault zone. Cooley (1993; P on figure 6) measured the formation south of Livingston, Montana. These measurements specify formation thicknesses between 75 and 95 m. Smith (2001; Q on figure 6) made several stratigraphic measurements of the formation northwest of Dillon, Montana, where the formation averaged 26 m in thickness. Maidment and Muxworthy (2019; R on figure 6) published a thickness of approximately 20 m for central and southwest Montana. Francis (1957) generated a Morrison Formation isopach map for Montana and North Dakota and Saskatchewan and Manitoba, Canada. The isopach was generated using well-log data and focused on the Williston Basin. Francis’ north-south Jurassic strata log cross section shows four well logs along the western flank of the Williston Basin. Francis’ north-south Jurassic strata log cross section shows four well logs along the western flank of the Williston Basin. The four well logs displayed in the cross section were reviewed for the formation thicknesses (Rhodes F-11-6, now the J. H. Heier F-11-6P, API 25019050140000; East Poplar Unit, 25085050580000; Casterline 1, API 25021051650000; Macioroski 1, API 25079050380000; S on figure 6).
Francis’ (1957) isopach map shows the thickest strata in southwestern Montana, which thins eastward with a zero-edge in central North Dakota, southern Saskatchewan, and Manitoba. According to this isopach map, the formation is estimated to be 61 m thick in the current study area.

The review of the historical measurements of the formation shows a wide variation in thickness around the state. The disparity in thicknesses observed on figure 6 is likely related to several factors. First is the possible variation in the paleotopographic surface at the top of the Swift Formation. Second, in some sections, the uppermost Swift parasequence consists solely of mudstone, making it challenging to ascertain the formation top. Third, the possible erosion and downcutting of the Morrison Formation during the K-1 unconformity and the subsequent erosion by the Kootenai basal conglomerate and sandstone beds. Fourth, the basal Kootenai sandstone bed is only sometimes in the section. Fifth, the structural complexities that include compressional and extensional tectonics (i.e., folding, thrust faults, and normal faulting) are common across the state and can contract or expand sections of the formation. And finally, the complicated geology resulting from the previous factors can result in unintentional erroneous measurements.

Regional Stratigraphic Thickness From Well Logs

Two complete stratigraphic measurements of the Morrison Formation were completed in southeastern Fergus County. Due to the structural complexity of Spindletop dome, the first stratigraphic measurement required a composite of several surveyed partial sections made on the southern and western limbs of the anticline. The second section was measured west of Grass Range along the Forest Grove Road (46°59'52.36" N., 109°4'32.92" W.) from the uppermost Swift Formation sandstone bed to the basal Kootenai sandstone bed. Both field measurements determined the formation is 72 m thick in the study area (red triangle on figure 7, Richmond and others, 2021b). Three hundred and ninety-three well logs from six counties in central Montana were reviewed to verify the field measurements (figure 7). The formation thickness, as derived from well-log data, in contrast to the historical field data (figure 6), shows that the formational thickness is relatively consistent across central Montana. The median formational thickness across the six-county area is 71 m. Both log cross section A-A' (figures 1 and 8), which trends northwest-southeast across southern Fergus and northern Musselshell Counties, and log cross section B-B' (figures 1 and 9) that trends southwest-northeast across Wheatland, Fergus, and Petroleum Counties, display a relatively consistent thickness in the formation. No discernible faults in the formation were observed in the well logs.

Undivided Morrison Formation

The Morrison Formation in Montana has yet to be divided into formal members; however, the Morrison Formation has been divided into a total of eleven members in Arizona, Colorado, New Mexico, South Dakota, Utah, and Wyoming. The most recognized members of the Colorado Plateau in stratigraphic order are the Tidwell, Salt Wash, and Brushy Basin Members. The Tidwell Member, named and described by Peterson (1988) and recently described by Carpenter (2022), does not extend northward into Wyoming or Montana. The Salt Wash Member was named for sandstone beds of the McElmo Formation (now Morrison Formation) southeast of the town of Green River, Grand County, Utah (Lupton, 1914) and is restricted to the Colorado Plateau (Mullens and Freeman, 1957; Owen and others, 2015). Gregory (1938) named the Brushy Basin Member for the variegated shales in San Juan County in southeastern Utah. A comprehensive regional investigation of the Brushy Basin Member still needs to be completed, but it likely does not extend north into Montana.

Walker (1974) informally subdivided the Morrison Formation into lower and upper “members” in the area of Great Falls, Montana. The “lower” Morrison consists of mudstone and limestone beds, and the “upper” part of the formation consists of mudstone and sandstone beds. Walker proposed that the “lower” Morrison deposition was lacustrine, whereas fluvial deposition dominated the “upper” part. Malone and Suttner (1991) proposed a tripartite division of the formation for the
northern Tobacco Root Mountains in southwestern Montana. They locally divided the formation based on the architectural geometry of lithologic units and siltstone:mudstone ratios on a low-energy terminal fan.

The formation was investigated in the Grass Range region with eight composite stratigraphic sections measured along the southwestern limb of Spindletop dome, where the formation is exposed (figure 10). The upper 20 m of the formation dip southward and are often covered by large, displaced blocks of the Kootenai basal sandstone. In places, the Kootenai basal sandstone blocks form a deflation surface and should not be interpreted as in situ. Normal faulting in and around the anticline makes obtaining accurate stratigraphic measurements difficult. The stratigraphic field sections shown on figure 10 provide a general overview of the formation.
Based on the field observations and measurements, no definable formation division is recommended.

The regional well-log data were also reviewed to provide a broader scope to determine if the formation could be divided into members. The regional well-log data shows a coarsening upward sequence in the type well log. A potential subdivision (dashed line on figure 5) may be extrapolated on the log curves locally; however, the marker does not extend across central Montana (figures 8 and 9). With no discernible lithologic changes in the formation and the lack of field or correlative log markers, the formation cannot be divided into members.

MORRISON FORMATION SEDIMENTOLOGY AND GEOCHEMISTRY

Mudstone Sedimentology and Geochemistry

In the Grass Range area of Montana, the Morrison Formation is a mudstone-dominated section with thin...
Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana

Richmond, D.R.

The sandstone:mudstone ratio from stratigraphic field measurements is 9%. The regional well-log data (n = 205) specifies a higher average sandstone:mudstone ratio of 25%.

The base of the Morrison Formation in the Lewistown area is defined by a mudstone bed (Calvert, 1909; Freeman, 1919) that extends from the top of the Swift Formation to the first sandstone or limestone bed of the Morrison Formation. Along the southern flank of Spindletop dome and elsewhere in the research area, a reddish illitic mudstone bed is also present. The reddish illitic mudstone bed extends into the Morrison Formation from the top of the Swift Formation to 15 m. The formation section generally lacks sandstone beds, with only a few narrow, thin-bedded siltstone beds observed. At the top of the reddish mudstone bed is a sharp, distinct color change to variegated mudstone beds of green, gray, and yellow hues interbedded with thin limestone and sandstone beds (figure 11). Additional reddish mudstone beds occur in the variegated

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>TD (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN 1</td>
<td>25027210100000</td>
<td>8000</td>
</tr>
<tr>
<td>Wegner 3-7</td>
<td>25027210300000</td>
<td>7555</td>
</tr>
<tr>
<td>Taylor SMR 41-24</td>
<td>25027210190000</td>
<td>2005</td>
</tr>
<tr>
<td>N Bar Ranch 1</td>
<td>25027050070000</td>
<td>1650</td>
</tr>
<tr>
<td>Teigen 1</td>
<td>25027211380000</td>
<td>2630</td>
</tr>
<tr>
<td>Delaney 3AKD</td>
<td>25065205400000</td>
<td>2410</td>
</tr>
</tbody>
</table>

Figure 9. A six-well log cross section (B–B'; see figure 1 for the line of section) that traverses southeastern Fergus County. It extends from western Petroleum County through the field study area in southeastern Fergus County into northwestern Musselshell, northern Golden Valley, and northeastern Wheatland Counties. The cross section is flattened on the top of the Morrison Formation. The implied lithologies are derived from the mirrored gamma-ray curve scaled 0 to 150° API. The thickness of the Morrison Formation is consistent along the five-county transect of 116 km. The displayed GR curves demonstrate that the formation has a low sandstone:mudstone ratio. Log total depths (TD) are measured in feet. Formation abbreviations are as follows: Swift (SWFT), Morrison (MRSN), and Kootenai (KTNA).
units, but these beds are usually localized and less than a few meters thick.

A noticeable color and clay mineralogy change from reddish illitic mudstones to variegated smectitic mudstones was one of three marker beds first described by Peterson and Turner (1993) in the Morrison Formation of the Western Interior. The "clay change" usually occurs in the lower part of the Brushy Basin Member of the Morrison Formation. This change in clay mineralogy has been used as a local and regional marker to place dinosaur quarries in a stratigraphic order within the formation (Peterson and Turner, 1993; Turner and Peterson, 1999; Richmond and Stadtman, 1996; Litwin and others, 1998; Richmond and Morris, 1998; Schudack and others, 1998; Turner and Peterson, 1999) and correlation of depositional facies (Demko and others, 2004). However, Trujillo (2006) recommends that the Morrison Formation "clay change" should not be used as a regional correlative tool because clay mineralogy varies laterally and vertically.

X-ray diffraction and X-ray fluorescence analyses were completed on mudstone samples for clay identification, mineral, elemental, and rare earth elements (REE). The normalized average clay composition of the formation mudstones (n = 7) is illite (38%), goethite (28%), kaolinite (26%), and smectite (8%). XRF data indicated no mineralogical change from illite to smectite at the color change. The Morrison Formation
“clay change” of the Colorado Plateau does not extend into central Montana (Turner and Peterson, 1999; this study).

The major minerals in the formation of mudstones are quartz, illite, goethite, kaolinite, and smectite, with minor percentages of orthoclase, calcite, dolomite, and pyrite (figure 12A). The mudstone’s primary elements are silica, calcium, iron, aluminum, and potassium, with minor percentages of sodium, titanium, sulfur, manganese, and phosphorus (figure 12B). The alkaline earth and transitional metals are barium, strontium, chromium, zirconium, nickel, rubidium, zinc, and vanadium, with minor ppm of cobalt, copper, molybdenum, gallium, niobium, lead, thorium, arsenic, and uranium. Yttrium is the only rare earth element present (figure 12C).

Sandstone Sedimentology and Geochemistry

The sandstone beds are characteristically thin-bedded, flat-bottomed, isolated single-bodied units. Sandstone bed vertical aggradation is uncommon. The average thickness of 68 sandstone beds is 94 cm, with a median thickness of 50 cm. Bedforms are usually absent, but some beds display planar or ripple laminations. Trough cross-bedding and lateral accretion from point bar migration were observed in only a few sandstone beds. Twenty-four sandstone bodies were measured to determine width:thickness ratios. The average sandstone body width:thickness ratio is 13.0.

Morrison Formation sandstones are angular to subangular (0.87–1.98), moderately well to very well sorted (0.50–0.25), very fine to fine-grained (3.48–2.03 Ph) quartz arenites (n = 22). Grains are cemented with sparry calcite and have low matrix percentages (< 10) (figures 4E and 4F). The grain composition of the Morrison sandstones is mainly monocrystalline quartz with low percentages of polycrystalline and microcrystalline quartz. Sutured composite quartz grains are common in the sandstones suggesting a sedimentary quartzite source. The quartz-rich sandstone mineralogy indicates a recycled orogen provenance for the Morrison sandstones (see Dickinson and Suczek, 1979). To differentiate Morrison sandstones from the underlying Swift and overlying Kootenai sandstones, percentages of monocrystalline, polycrystalline, and microcrystalline quartz grains can be used (figure 13).

X-ray fluorescence analysis was completed on sandstones from the Swift (n = 3), Morrison (n = 11), and Kootenai (n = 1) Formations for elemental composition. The sandstone samples are in stratigraphic order. All the sandstones are composed of varying percentages of silicon, calcium, iron, and aluminum with minor proportions of potassium, sodium, titanium, sulfur, manganese, and phosphorus (figure 14B). The Morrison sandstones generally have higher percentages of iron and magnesium than the other formational sandstones. The sandstone’s alkaline earth and transitional metals are barium, strontium, chromium, zirconium, vanadium, copper, with minor ppm of rubidium, zinc, cobalt, molybdenum, gallium, niobium, lead, thorium, arsenic, and the rare earth element yttrium (figure 14B). Uranium, if present, is undetectable. The XRF confirms that the sandstones are quartz arenites.

Limestone Sedimentology

Thin (< 20 cm) micrite beds are scattered throughout the Morrison section, and most of the beds appear to be laterally limited (figure 10). In the lower part of...
the formation, 14.5 m above the Swift Formation, is a 1.5-m-thick micrite bed with thinly interbedded mudstones (20 cm). The micrite bed may have an area larger than approximately 5 km², but exposures are limited (stratigraphic section H on figure 10). The micrite beds contain unpaired fossil ostracods and charophyte gyrogonites (Johnson-Carroll, 2014). The disarticulated bone material tentatively assigned to the diplodocid Suuwassea was encased in the top of the uppermost micrite bed.

Figure 12. Graphs of X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses of mudstone samples for mineral composition, primary elements, and alkaline and transitional metals. Two mudstone samples (5E section C and section D are from the lower distal floodplain facies (less than 15 m) above the Swift Formation. Samples 5E section E-A, B, C, and Fe are from Quarry 2 stratigraphically at 47 m above the Swift Formation. Sample 5E SE-Fe is a goethite concretion found in the quarry. Sample section 5E F-8 is stratigraphically 55 m above the Swift Formation. (A) XRD analyses of several mudstones from the study area indicate that the mudstones are composed of illite, goethite, and kaolinite, with minor percentages of smectite. The illite and goethite indicate intense weathering and high organic content. (B) XRF shows the percentages of the primary elements for the formation. (C) XRF graph that displays the distribution of alkaline earth and transitional metals for the formation. Element abbreviations are as follows: silica (Si), calcium (Ca), iron (Fe), aluminum (Al), and potassium (K), with minor percentages of sodium (Na), titanium (Ti), sulfur (S), manganese (Mn), and phosphorous (P). The alkaline earth and transitional metals are barium (Ba), strontium (Sr), chromium (Cr), zirconium (Zr), nickel (Ni), rubidium (Rb), zinc (Zn), vanadium (V), with minor ppm of cobalt (Co), copper (Cu), molybdenum (Mo), gallium (Ga), niobium (Nb), lead (Pb), thorium (Th), arsenic (As), uranium (U), and yttrium (Y).
One hundred and seven small (< 3 m diameter) carbonate buildups were discovered in the Morrison Formation of central Montana (Richmond and others, 2021b). The buildups are distributed stratigraphically between 40 and 52 m above the Swift Formation. The mound springs were produced by subartesian groundwater moving up fractures to the surface. Bulk rock negative δ18O and δ13C values demonstrate the buildups were produced by meteoric waters in a continental setting, with the groundwater having a short residence time in the subsurface, indicating that the region experienced extended periods of increased precipitation (Richmond and others, 2021b; figure 15).

Button Butte is a prominent Laramide uplift 10 km southeast of Grass Range, Montana. Southwest of Button Butte (1.4 km) there are several thin (20 to 50 cm) micrite beds in the uppermost Morrison section. The beds are stratigraphically located 56.6 m above the Swift Formation. The lateral extent is unknown as the outcrop exposure is limited in stratigraphic section I on figure 10.

Rhyolitic Ash Bed

Stratigraphically 38 m above the Swift Formation is a 20-cm-thick, laterally extensive, coarse-grained, tuffaceous, rhyolitic ash bed (figure 16A). The first discovery of an in situ Upper Jurassic-aged ash in central Montana. The majority of magmatism in Montana occurred during the Late Cretaceous and the Paleogene Epochs. Intrusive complexes dominated the Late Cretaceous followed by volcanism during the Paleogene (Scarberry and others, 2020).

The weathered ash bed surface exhibits dissolution pores with the primary pores ranging from macro- to micropore sizes (figure 16B). One hundred meso- and macropore diameters were measured from hand samples. The mean meso/macropore diameter is 4.5 mm with the largest macropore diameter observed measuring 26 mm. Three hundred micropore diameters were measured from a thin section indicating the micropores are very fine grained (3.89 Φ). In the fine ash, quartz grains are uncommon. In unweathered rock, the pores are filled with gray-green clay. The ash matrix and the pore material were analyzed with XRF to determine the geochemistry. The XRF indicates that the ash is very silica-rich and therefore is classified as rhyolitic ash. XRF was also performed on two Yellowstone rhyolitic ashes for comparison. Although there is variability in the Morrison ash, its chemical makeup resembles the ashes from the Yellowstone caldera (figure 17). The pore material was altered to a mixture consisting of silica and aluminum-rich clay. In the thin section, the pore material is coarser grained than the matrix with abundant quartz grains; therefore, the pore material is interpreted to have been lapilli, as opposed to an ash aggregate (figure 16C).

MORRISON FORMATION DEPOSITIONAL FACIES

Historical Review

The early researchers of the Morrison Formation in Montana (Calvert, 1909; Fisher, 1909, Freeman, 1919; Lupton and Lee, 1921; Dekalb, 1922; Reeves, 1927; Gardner and others, 1945, 1946; Gardner, 1950, 1959; Towse, 1954; Francis, 1956, 1957; Hadley, 1956; Vine,
Figure 14. X-ray fluorescence (XRF) comparison of the Swift (SWFT), Morrison (MRSN), and Kootenai (KTNA) sandstones. The percentages of the primary elements were derived from the XRF (A), whereas the percentages for the alkaline and transitional metals (B) were normalized from ppm to show the relative abundance of the elements present in the sandstones. The Swift sandstones are from the upper part of the formation. The Morrison sandstones are labeled by their stratigraphic position above the Swift Formation (example: MRSN11–11 m above the Swift). The primary elements, alkaline, and transitional metals, are likely related to the availability and solubilities of elements from the soil and groundwater from the decomposition of organic matter that subsequently became incorporated into the sandstone bodies. The elements suggest that the climate was humid and warm with high plant productivity. Element abbreviations are as follows: silica (Si), calcium (Ca), iron (Fe), aluminum (Al), and potassium (K), with minor percentages of sodium (Na), titanium (Ti), sulfur (S), manganese (Mn), and phosphorous (P). The alkaline earth and transitional metals are barium (Ba), strontium (Sr), chromium (Cr), zirconium (Zr), nickel (Ni), rubidium (Rb), zinc (Zn), vanadium (V), with minor ppm of cobalt (Co), copper (Cu), molybdenum (Mo), gallium (Ga), niobium (Nb), lead (Pb), thorium (Th), arsenic (As), uranium (U), and yttrium (Y).
1956; Knechtel, 1959; Moritz, 1960; Christie, 1961; McMannis, 1965; Norwood, 1965; Ballard, 1966; Harris, 1966; Silverman and Harris, 1967; Fraser and others, 1969) provided stratigraphic measurements and lithologic characteristics; however, they did not postulate on the depositional facies but only stated that the formation was a nonmarine or freshwater deposit. Moritz (1951) was the first to propose that after the retreat of the Sundance sea, southwest Montana consisted of a low-gradient plain with fluvial deposits and ephemeral lakes. Hadley and Milner (1953) proposed that the formation was “lagoonal in character.” Peterson (1966) proposed that during Morrison’s time, a large lake occupied the Montana trough during a “moist” climate. Silverman and Harris (1966) agreed with Peterson’s (1966) lake hypothesis but stated that the upper Morrison consisted of lacustrine, floodplain, and fluvial channel deposition. Harris (1968) stated the formation is comprised of mudstone beds interbedded with freshwater lacustrine limestone and fluvial sandstone beds. Walker (1974) reviewed the formation in the Great Falls area and proposed a lacustrine and fluvial depositional model. A study of the sedimentology of the differing lithofacies and sandstone body architecture in the northern Beartooth and Gallatin Ranges determined the formation was deposited on an anastomosing floodplain (Cooley, 1993; Cooley and Schmitt, 1998). A review of the differing lithofacies of the formation north-northwest of Dillon, Montana, Smith and others (2006) concluded that the depositional facies were the product of a mud-dominated fluvial system of a low-gradient floodplain.

Lower Distal Floodplain Facies

There does not appear to be a regional stratigraphic marker to subdivide the formation into members; however, locally, there is a distinct and abrupt change in the depositional facies. Locally, a thick, laterally extensive reddish illitic mudstone bed (figure 11) rests conformably on the sandstone beds of the upper Swift tidal parasequence. Isolated small siltstone beds are uncommon. The siltstone/sandstone beds are generally less than 20 cm thick with a minimal limited lateral extent (< 1 m). The siltstones are angular (0.58), moderately sorted (0.61), coarse-grained (4.59 Φ), matrix-supported siltstones (n = 2; figure 4G). The sandstones are angular (0.52), well sorted (0.50), fine-grained (2.95 Φ), quartz arenites (n = 1). No fossils have been found in the lower unit. The facies association with the Swift uppermost tidal facies (Richmond, 2022) designates that the lower reddish mudstone bed represents a well-drained distal floodplain with its associated very small distributive fluvial channels. No micrite beds were observed associated with the facies.

Upper Fluvial Depositional Facies

The upper depositional facies is also a mudstone-dominated section (≥ 75%) with small sandstone bodies that have an average width:thickness ratio of 13 (n = 24) and thin, flat-bottomed sandstone beds (n = 68). The beds are composed of subangular, well sorted, very fine to fine-grained sandstones. The small sandstone beds that display channel geomorphology have a low width:thickness ratio and sometimes display lat-
eral accretion (figure 18). The beds have abrupt lithofacies transitions and are composed of finer-grained sediments interpreted to represent anastomosing fluvial channels (Smith and Putman, 1980; Smith and Smith, 1980; Rust, 1981; Morris and Richmond, 1992; Richmond and others, 2020). Anastomosing (distributive) sandstone channels have width:thickness ratios of less than 40 (Gibling, 2006) and are relatively narrow and deep, with fine-grained sand carried along as bedload in the channel thalweg. Channel fills consist of finer-grained sediments (i.e., silt or mud). Trough cross-bedding is uncommon. The flat-bottomed, single- and multistory sandstone beds are interpreted to be crevasse splays. Herein, flood and crevasse splays are differentiated. During normal flood stages, water tops the channel's levees, depositing silt- and clay-sized particles onto the floodplain (Fisher and others, 2008; Burns and others, 2019). T is repeated flooding results in floodplain aggradation (Shen and others, 2015). In contrast, a crevasse splay occurs when the levee wall is breached, cutting down to the channel bottom to release sand-sized sediment onto the floodplain. Morrison Formation crevasse splay sandstone deposits are flat-bottomed, thin (0.9 m average), usually structureless sandstone beds (Richmond and others, 2020). With a few exceptions, the thin, laterally limited micrite beds scattered throughout the section represent interfluvial lakes or ponds (flood ponds). Lacustrine and palustrine deposition is commonly recorded by mudstone deposition (Richmond and others, 2017; Hunt and Richmond, 2018; Richmond and Murphy, 2020).

The depositional model of anastomosing fluvial channels with associated flood and crevasse splay and interfluvial lacustrine micrite and mudstone deposits in central Montana agrees with previous depositional interpretations for the formation of western Montana (Cooley, 1993; Cooley and Schmitt, 1998; Smith and others, 2006). Additionally, the fluvial channel geomorphology, sedimentology, and floodplain facies are similar to those of the Brushy Basin Member of the Morrison Formation on the Colorado Plateau (Kantor, 1995; Richmond and Morris, 1996) and the Kenton Member of the Morrison Formation of Oklahoma (Richmond and others, 2020).

The distributive fluvial system model has been used
Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana
Richmond, D.R.

To characterize the deposition of the Salt Wash and Brushy Basin Members of the Colorado Plateau and the Kenton Member of Oklahoma (Owen, 2014; Owen and others, 2015; Richmond and others, 2020). The north-eastward thinning of the Morrison Formation (figure 7) and the interpreted depositional model support the northeastward progradation of a broad fluvial system across central Montana. Furthermore, the uniform formation thickness across central Montana implies that numerous fluvial channels migrated across the broad flat floodplain providing fine-grained sediment across the region.

DISCUSSION: MORRISON PALEOClimatic PROXIES

Morrison Basin Paleoclimatic Overview

Based on climate models and lithologic proxies, many researchers have proposed the Morrison foreland basin experienced a semiarid to arid zonal climate (Parrish and others, 1982, 2004; Parrish and Peterson, 1988; Demko and Parrish, 1998; Turner and Fishman, 1991; Valdes and Sellwood, 1992). To support the giant herbivorous dinosaurs which roamed the Morrison basin, some researchers have proposed that there were riparian environments that supported abundant plant life (Peterson and Turner, 1987). By the Late Jurassic, North America’s northward movement fragmented the Triassic monsoonal climate pattern resulting in a low-pressure cell over the continent (Parrish and Peterson, 1988). Modeled temperatures for western North America during the Late Jurassic ranged from 5°C (winter) to greater than 36°C (summer) and were about 5°C warmer than at present (Demko and Parrish, 1998). Temperature independently does not account for the aridity of western North America during the Late Jurassic. The aridity was likely generated by several factors,

Figure 17. X-ray fluorescence analyses of the Morrison ash bed. The high silica percentages of the ash matrix (Mtx A through D) indicate that the ash is rhyolitic. The XRF of the lapilli (Pore A through E) indicates it altered to a high silica and aluminum clay. Two rhyolites from the Yellowstone basin (YSR-1 and YSR-2) as shown for comparison. The nine mineral percentages represent 99% of the rock. Element abbreviations are as follows: silica (Si), aluminum (Al), potassium (K), titanium (Ti), calcium (Ca), magnesium (Mg), iron (Fe), sulfur (S), and barium (Ba).
including the latitudinal position in the subtropical dry belt, the Sevier orogenic belt acting as a rain shadow (Demko and Parrish, 1998), and oceanic upwelling driven by coastal wind patterns, which would have increased the aridity of western North America (Parrish and Peterson, 1988). Using eolian lithologic units from the Tidwell, Salt Wash, Bluff Sandstone, Junction Creek, and Recapture Members of the Morrison Formation, a westerly wind direction was ascertained for the Late Jurassic of North America (Parrish and Peterson, 1988; Peterson, 1988). These eolian units of the Morrison are stratigraphically in the lower part of the formation (Demko and Parrish, 1998). A zonal climate model by Parrish and others (1982) predicted low rainfall patterns for much of the Morrison basin during the Volgian Regional Stage (Tithonian). They also mapped evaporates and coals for the same stage, and the spatial representation for these proxies corresponds to a Tithonian zonal climate. Further geologic evidence for a dry climate is the large saline lake, Lake Toödidi, demarcated by diagenetic zeolites and feldspars, indicating the lake underwent repeated wetting and drying under arid conditions punctuated by episodic rainfall (Turner and Fishman, 1991). Richmond and Morris (1998) reported similar findings at the Dry Mesa Dinosaur Quarry. The quarry is located on the northeastern margin of Lake Toödidi and records an extreme drought (Phase 3; Shipman, 1975) in which 30 genera of vertebrates, including dinosaurs, pterosaurs, crocodiles, lungfish, and mammals, died at a local waterhole. Following decomposition and disarticulation, their bones were transported for a short distance by a catastrophic flash flood and were buried.

Additional evidence for drier climatic intervals is the presence of evaporite-associated chert beds (Magadi-type cherts). Evaporite-associated chert beds have been reported from the Morrison Formation in Wyoming (Surdam and others, 1972), Colorado (Dunagan and others, 1997), and Oklahoma (Richmond and others, 2019a, 2020). These evaporite-associated cherts form in a shallow acidic (pH > 9) phreatic zone as a result of the silification of sulfate evaporites (anhydrite). The antecedent lacustrine evaporites designate prolonged periods of increased evaporation due to increased temperature or decreased precipitation. Gypsum mineralization signifies a mean annual precipitation of less than 350 mm/year (Gu and others, 2015).

In contrast, other lithologic evidence supports the presence of perennial fluvial, pluvial, and lacustrine facies in the Morrison basin (Lockley and others, 1984, 1986; Dunagan, 1999; Dunagan and Turner, 2004; Gorman, 2007; Gorman and others, 2008; Richmond and others, 2020). Several paleolakes have lacustrine ooid facies (Lockley and others, 1984; 1986). Ooids can take over a thousand years to form (Neese and Pigott, 1987), suggesting a long-term presence for these paleolakes. The first tufa deposits for the Morrison Formation have been identified in central Montana and are indicative of a high groundwater table (Richmond and others, 2021b). There is also an indication of ephemeral deposition, particularly from fluvial and pluvial deposits signifying seasonal or episodic precipitation was sufficient for fluvial deposition and the wetting of ponds (Richmond and Morris, 1996; Richmond and others, 2020). Dodson and others (1980) suggested a strongly seasonal climate based on dinosaurian fauna and taphonomy. However, some dinosaurs are assumed to have been migratory (Bronzo and others, 2017). Therefore, their presence or absence from a region should not be used as
Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana
Richmond, D.R.

Evidence to infer paleoclimate. The presence of aquatic vertebrates, e.g., crocodiles (Dunagan, 1999; Connelly, 2002; Hunt and Richmond, 2018), turtles (Gaffney, 1979; Hunt and Richmond, 2018), lungfish (Kirkland, 1987), bony fish (Small and others, 2007, Gorman and others, 2008), and amphibians (Hecht and Ester, 1960) are generally associated with their aquatic environment and indicate perennial lakes and rivers were present in the Morrison basin (Gorman and others, 2008; Richmond and others, 2020). Aquatic invertebrates have specific environments in which they live (Evanoff and others, 1998; Schudack and others, 1998; Good, 2004; Richmond and others, 2017) and usually require clean perennial lakes and rivers to survive. Aquatic invertebrates are present throughout the Morrison basin (Evanoff and others, 1998).

Horsetails, ferns, cycads, and various large gymnosperms indicate sufficient precipitation for growth. According to Tidwell (1990), the abundance of plant fossils in the formation indicates a humid, tropical climate. A newly described fossil wood, Agathoxylon hoodii, from the Salt Wash Member of the Morrison Formation in eastern Utah infers a warm equable climate for the eastern basin lowlands (Gee and others, 2019; Sprinkel and others, 2019). Three fossil wood genera were newly discovered in close proximity to one another in the Boise Member of the Morrison Formation in western Oklahoma. The occurrence of three fossil wood genera, Xenoxyylon meisteri, Cupressinoxylon, and Agathoxylon, in the same stratigraphic horizon, indicates a period of increased precipitation at the southern basin periphery during deposition of the Boise Member (Richmond and others, 2018, 2020).

Different regions of the Morrison Formation have been explored for palynology (Newman, 1972; Tschudy and others, 1980, 1988; Hotton, 1986; Litwin and others, 1998; Baghai-Riding and Hotton, 2009, 2011; Hotton and Baghai-Riding, 2010, 2016; Baghai-Riding and others, 2013, 2014, 2015, 2018) The majority of the data indicates arid climatic conditions for the formation with wetter conditions in the more northern part of the foreland basin. Demko and Parrish (1998) suggested plants only represent a small spatial and stratigraphic part of the formation and are inconsequential to the overall climatic interpretation.

Climatic proxies require a stratigraphic and areal position, and although there were intervals and regions where the formation was wetter, overall, the Morrison of the southern states and Colorado Plateau is considered semiarid to arid (column A on figure 19). In the following sections, climate proxies will be addressed in order of lithologic proxies, faunal and floral proxies, and will be, where applicable, presented in stratigraphic order. Each proxy will be first described and then followed by its climatic interpretation.

LITHOLOGIC CLIMATIC PROXIES

Sandstone Geochemistry

Sandstone geochemistry is a compilation of sandstone mineralogy, groundwater chemistry, and diagenetic fluids. The sandstones are quartz arenites with low percentages of the interparticle matrix, and there is no evidence of diagenetic overprinting on the sandstones. The primary elemental percentages are derived from the sandstone's composition (see figure 14A). The alkaline earth metal barium and the transitional metal manganese together typically make up more than 50% of the alkaline earth and transitional metal elements (see figure 14B). The high percentages of these two elements may be related to the availability and solubilities of these elements from the soil and groundwater as byproducts of the decomposition of organic matter. Therefore, the mobilization pathways of these elements are evaluated.

The accumulation of organic materials is chiefly a function of the annual litterfall minus decomposition. The most sizable proportion of allochthonous organic matter is from foliage, seeds, branches, and bark. The main litterfall contribution is from the overstory, with understory plants supplying about 10% (Binkley and Fisher, 2019). Storms can accelerate litterfall volumes, whereas elevated temperatures and soil moisture can hasten decomposition rates. Conversely, ground fires can consume organic materials. Annual litter production can be related to latitude. During the Late Jurassic, central Montana was at a paleolatitude of 50° north (Richmond and others, 2019d). Most modern conifer forests have an annual litterfall of 1975 to 5900 kg/hectare/year (Binkley and Fisher, 2019); however, a temper-
The rate of organic decay depends on the interaction of physical factors, water chemistry, and biological agents. Decomposition can be rapid, with turnover rates varying between 1 to 3 years for cool temperate climates (Binkley and Fisher, 2019). Litterfall on the forest floor is fragmented by arthropod and annelid decomposers, then consumed by rotifers and pervasive microbes. The top organic soil layer comprises undecomposed litter that overlies the fermentation layer, where decomposition occurs. This layer overlies the humus layer, where decay is nearly complete.

In boreal forests nutrient turnover is slow. Potassium and sodium are quickly leached from the soil. Nitrogen, phosphorus, sulfur, and magnesium are released into the soil after a long period. Iron, zinc, and copper are left in the accumulated litter material (Staaf, 1980).

Barium and manganese are related to vegetative cycling. Barium concentrations are controlled by soil acidity but also by the concentration of sulfates (Guyette and Cutter, 1994; Jennings and others, 2015). According to Jennings and others (2015), barite formation occurs in exposed wetland, lacustrine, and coastal plain environments. Wetlands contain sulfate-reducing microorganisms resulting in a high sulfate reduction rate (Pester and others, 2012). Sulfate-reducing microorganisms may limit the sulfate concentration in groundwater and lower the soil’s barium concentration.

Manganese is an essential plant nutrient in the bole wood and foliage (Guyette and Cutter, 1994). The subsurface geology controls soil manganese concentrations and increases vegetation cycling (Richardson, 2017). The soil pH controls its solubility and concentrations, with more acidic soils greatly influencing potencies (Guyette and Cutter, 1994). Soils in wet climates are typically acidic, whereas in dry climates, the soils are alkaline (Richmond and others, 2021b; Slessarev and others, 2016). High mobilization of manganese and barium demonstrates the presence of acid soils, which are indicative of a wetter climate.

Interestingly, a lower Morrison splay sandstone bed stratigraphically 18 m (sample MRSN18 on figure 14B) above the Swift Formation and 1.5 m above a lacustrine limestone bed has a high percentage of copper. Copper
is an essential element for plant growth, and soils naturally contain copper ranging from 2 to 100 ppm and averaging about 30 ppm. The sandstone has greater than 900 ppm copper (figure 14B). Acidic soils are more likely to be deficient in copper, but a higher pH with humid and wet climatic conditions supports copper concentrations in soils (Ballabio and others, 2018). The more alkaline pH may be due to its stratigraphic proximity to the lacustrine limestone and not a drier climate.

The sandstone alkaline earth and transition metals concentrations suggest a wet environment with associated high plant productivity. Vegetation decomposition leached minerals into the soil and groundwater and subsequently into the fluvial channels to become incorporated into the sandstone bodies. The sandstone geochemistry suggests a humid subtropical climate was pervasive during the deposition of the upper fluvial depositional facies (column B on figure 19).

Mudstone Geochemistry

The distinct clay mineral type and abundance in any deposit depend upon three major factors: provenance, transformation, and neoformation. Clay minerals can be a reliable indicator of provenance and depositional environments (Chaudhri and Singh, 2012). Illite is the allochthonous product of weathering feldspathic and micaceous crystalline rocks under cool/temperate and dry conditions (Chaudhri and Singh, 2012; Raigemborn and others, 2014). Kaolinite is the byproduct of in situ weathering of feldspars, micas, smectite, and other volcanic material under warm and mesic conditions (Singer, 1980, 1984; Raigemborn and others, 2014). In addition to the three principal clays of the Morrison Formation, mudstones of the formation in central Montana also have significant percentages of goethite (figure 12A). The two most common pedogenic Fe-oxides in soils are hematite and goethite. Hematite formation is facilitated by alternating wet (less than 350 mm/year; Wu and others, 2018) and dry environmental conditions under warm to hot temperatures (Zhao and others, 2017). The presence of hematite contributes a predominantly reddish hue to soils. In contrast, goethite is formed under continuously wet conditions under a wide range of temperatures and gives a yellowish reflecting to the soil (Zhao and others, 2017; Wu and others, 2018).

The mudstone strata of the well-drained distal floodplain depositional facies (< 15 m) are locally a deep reddish color (figure 11). In contrast, the upper fluvial depositional facies are variegated with hues of green, gray, yellow, and red (figure 11). Stratigraphically percentages of goethite tend to increase higher in the upper fluvial section (figure 12A). The mudstone color change from red to variegated hues may signify a climatic change from alternating wet and dry to continuously wet conditions. Soils with a high organic content tend to favor goethite formation over hematite.

Analysis of channel geomorphology and channel fill can determine the climatic regime under which the anastomosing fluvial systems were deposited; however, the associated floodplain facies give the strongest signal. In mesic regions, interfluvial sediments consist of lacustrine and palustrine deposits; coals are often present (Smith and Smith, 1980; North and others, 2007). In arid environments, there is a general absence of levees. As a result, crevasse avulsions, lacustrine, palustrine, and organic deposits are primarily absent from the floodplain (Rust, 1981; Nanson and others, 1986; North and others, 2007). In central Montana, Morrison interfluvial sediments comprise crevasse and floodplain deposits, lacustrine, palustrine, and organic-rich deposits.

X-ray fluorescence data of the mudstones (B paleosol horizons) can be used to calculate the chemical index of alteration minus potassium (CIA–K) and the calcium and magnesium weathering index (CALMAG). These values have been used to estimate mean annual precipitation (MAP) for the Morrison Formation in North America (Myers, 2009; Myers and others, 2012b, 2014) and the Lourinhã Formation in Portugal (Myers, 2009; Myers and others, 2012a). The estimated mean annual rainfall for northern Wyoming and southern Montana was greater than 1200 mm/year (Myers and others, 2012b, 2014). The central Montana CIA–K values range from 57 to 86, averaging 73. The calculations provide a CIA–K MAP estimate between 759 to 1270 mm/year with an average of 999 mm/year. The CALMAG values range from 53 to 91, averaging 74. The CALMAG calculations yield MAP estimates between 775 to 1625 mm/year with an average of 1234 mm/year (table 1).
A review of the stratigraphic position of the samples in Table 1 shows that the mean annual precipitation was not constant throughout the section. However, the average CIA–K MAP (999 mm/year) and CALMAG MAP (1234 mm/year) correlate with the estimates for the region derived by Myers and others (2014). Mudstone geochemistry, interfingence sedimentation, and CALMAG data show a predominantly humid subtropical climate for the formation (column B on figure 19).

Micrite and Mudstone Beds

West of Spindletop dome along the Tyler Cut Road, stratigraphically at 14.5 m, is a 6-m-thick section of interbedded micrite and mudstone beds (Johnson-Carroll, 2014). Some micrite beds are fossiliferous, containing small bivalves, ostracods, and charophyte gyrogonites, whereas others appear unfossiliferous (Johnson-Carroll, 2014). The lateral extent of the micritic section is unknown due to the lack of outcrop exposures but is estimated to be at least 10 km². The micrite and mudstone section represents shallow lacustrine and subsequent palustrine depositional facies. Also associated with these beds are the vertebrate fossils (?Suuwassea, and an identified ornithopod dinosaur) and the fossil wood, Xenoxylo meisteri.

Above the lacustrine/palustrine facies at 19 m is a greenish illitic mudstone bed. The mudstone bed contains abundant invertebrate fossils. The mudstone bed, with its numerous invertebrate fossils, is interpreted to be a floodplain deposit that transported the fossils (Richmond and others, 2017). The invertebrate fossils and their paleoclimatic interpretation will be discussed below. The lacustrine/palustrine depositional facies recorded the transition from shallow ponds to wetlands and a floodplain documenting a flooding event. The facies transition may be due to sediment infilling of the lake or as a response to a drier paleoclimatic trend. The presence of a small lake, associated wetlands, and splay events indicate high precipitation during the deposition of these strata (column C on figure 19).

Mud-Clast Conglomerate Bed

Southwest of Quarry 2 is a meter-thick, mud-clast conglomerate bedset stratigraphically 21 m above the Swift Formation (see stratigraphic columns E and F on figure 10). The bedset is divided into numerous beds...
of rip-up conglomerate, fine-grained sandstone, and mudstone (figure 20). The bedset represents a proximal crevasse splay deposit produced from multiple flooding events. No correlative fluvial channel has been recognized. The repeated flooding indicates high, possibly seasonal, precipitation (column D on figure 19).

Silcrete Bed

A reddish illitic mudstone bed is capped by a 20-cm thick, laterally extensive, silcrete bed. The silcrete bed is stratigraphically 23 m above the Swift Formation. The parent rock is a subangular (1.34), moderately well sorted (0.60), very fine grained (3.95 Φ) quartz arenite.

In a hand sample cross section, the silcrete exhibits angular and subangular blocky microstructures resulting in ped blocks and nodules that range in size up to 20 mm (figures 21A and 21B). In the thin section, the microstructure matrix is light and dark (figures 21C and 21D). Figure 21C shows an annealed fracture, whereas figures 21D and 21E display fractures filled with organic-rich sediments. Additional interesting features observed in the thin section are concentric rings (figure 21F) interpreted to be the initial stages of concentric nodule formation. The silcrete ped block (figure 21A, site 1) and the microstructure matrix (figure 21A, site 2) were analyzed by XRF. Both the ped block and microstructure matrix have high percentages of silica. However, the moderate reddish-orange matrix (figure 21A, site 2) has higher percentages of aluminum, titanium, calcium, and iron (figure 22).

Silcretes form in the phreatic zone associated with soil formation and require stable geological conditions for an extended time (Milnes and Thiry, 1992). Silcrete customarily forms in arid or semi-arid climates according to numerous Cenozoic studies of silcretes in southern Africa, Australia, and elsewhere (Summerfield, 1983; Trewin and Fayers, 2005). However, silcretes also form where there is an abundance of water and organic acids. The water, which may be seasonal, is required to migrate organic acids and mobilize silica. Organic acids, formed by copious plant life, enhance quartz dissolution but not its solubility (Taylor and Eggleton, 2017). In topographically low areas, near fluvial systems or lakes with slow flowing or stagnant water and abundant plants, organic-rich water produces the acidic reducing conditions for silica dissolution. Silica-saturated alkaline groundwater (pH ≥ 9) precipitates silica, especially when mixing with a lower pH surface water. These added ions will facilitate the silica precipitation if aluminum, iron, magnesium, or sodium chloride ions are also present (Trewin and Fayers, 2005; Taylor and Eggleton, 2017).

Metallic oxides, such as aluminum, titanium, and iron, are most common where the climate is warm and wet but unusual at higher elevations and cool temperate zones (Ségalen, 1971). Titanium comprises about 0.57% of the Earth’s crust. Therefore, a concentrated titanium weight percent in silcretes is typical. Australian silcretes have an average weight percentage of 1% (Taylor and Eggleton, 2017). The Montana Morrison silcrete samples have high concentrations of titanium at 1.4% and 5.5%. Titanium is mobile in weathering environments with a pH less than 4, but between a pH of 4.7 and 6.7 (figure 22), titanium hydroxyls tend to be absorbed in silica because silica and titanium have opposite charges over this pH range. A highly acidic environment in which titanium is soluble and incorporated into silcrete suggests abundant vegetation and a mesic to subtropical climate (Summerfeld, 1983).
Blocky microstructures often form by contraction from sediment desiccation (Stoops and others, 2010). Vertisols repeatedly crack and swell in response to desiccation and precipitation with successive wet and dry cycles, gradually and progressively reducing the size of the peds from blocky to platy (Kovoda and Mermut, 2010). The width of the microstructures implies long dry periods. However, the large size of the ped blocks indicates that dry/wet cycles were few. The light and dark microstructures (figures 21C, 21D, and 21E) suggest multiple dry cycles followed by cementation. The light microstructure (figure 21C) is likely from the remobilization of quartz from the sandstone. In contrast, the dark microstructure is a subsequent dry/cementation cycle infilled with a high percentage of organic matter (Kovoda and Mermut, 2010). Concentric nodules are common in vertisols and suggest a moist climatic regime with seasonal wet/dry cycles (Kovoda and Mermut, 2010), but the conditions were insufficiently long for the concretion to form fully.

The central Montana Morrison silcrete indicates a minimum of several prolonged dry periods followed by wet intervals. The thinned bedded, fine-grained quartz arenite is interpreted to be a crevasse splay bed. Incor-
porated into the upper phreatic zone, it and any overly-
ing soil cracked from a prolonged dry period. Some mi-
crostructures were cemented during a subsequent wet
interval with the white quartz. A subsequent dry period
again produced sand cracks that were infilled with a
dark organic, mineral-rich matrix. The matrix chemis-
try indicates an abundance of vegetation that grew in a
typically warm, mesic climate. The formation of the sil-
crete exhibits a complicated climate record marked by
an overall dry period (column E on figure 19).

**Quarry 2 Mudstone and Sandstone
Bed Sequence**

The stratigraphic sequence at Quarry 2 records a
depositional facies transition from a humic pond to a
fluviatilis plain capped by distal crevasse splay beds
(figure 23). The lowest exposed bed of the sequence
is an indurated yellowish-brown illitic mudstone bed
(figure 23, bed A). The subsequent stratum is a 15-cm-

thick, reddish illitic mudstone bed (figure 23, bed B).
The bonebed is located at the base of a 70-cm-thick,
gray illitic mudstone bed stratigraphically 47 m above
the Swift Formation (figure 23, bed C). A 140-cm-thick,
greenish illitic mudstone bed is overlying the bone bed
(figure 23, bed D) and is capped by a 20-cm-thick sand-
stone bed. This sandstone is a subangular, well sorted
(0.35), fine-grained (2.83 Φ), quartz arenite (figure 23,
bed E). The sandstone bed is overlain by a 20-cm-thick
mudstone bed and is capped by numerous stacked,
thin-bedded (< 5 cm) sandstone beds totaling 70 cm
thick. The sandstones are subangular, moderately sort-
ed (0.50), fine-grained (2.98 Φ) quartz arenites.

The XRF analysis of the lowest mudstone bed re-
corded a high concentration of molybdenum (144
ppm) (figures 12C, column 5E SE-BA). The average
background molybdenum concentration for Morrison
mudstone beds is 8 ppm. In terrestrial environments,
molybdenum is typically enriched in humic or dystro-
phic lake or pond environments filled with decaying
organic material. The overlying reddish mudstone bed
likely represents well-drained sediments of the desic-
cated or infilled underlying humic pond. The overlying
gray dinosaur-yielding mudstone bed is interpreted to
represent the reoccurrence of the pond. No microverte-
brate or invertebrate fauna were found in the bed. Only
a few charophyte gyrogonites (Aclistochara), freshwater
diatoms, and algae (unidentified calcispheres) were re-
covered (Styles, 2014). Clumped oxygen isotope analy-
sis of the quarry mudstone yielded a paleotemperature
of 44°C. The greenish mudstone records the transition
to a fluviatilis plain depositional facies. The 20-cm-thick
sandstone bed represents an isolated distal crevasse
splay. Numerous thin (< 5 cm) distal crevasse splay
sandstone beds cover the intercalated mudstone bed.
Of en preserved atop the sandstone beds are very thin
laminae (< 1 cm) of banded microbialites formed by
cyanobacteria (figure 4H). The sedimentary succession
indicates a variable paleoclimate with an overall trend
of high precipitation exceeding evaporation with elevat-
ed temperatures (Richmond and Murphy, 2020; column
F on figure 19).
Carbonate Mound Springs

One hundred and seven small carbonate buildups were discovered in the Morrison Formation of central Montana. They are interpreted to be subartesian freshwater mound springs and occur stratigraphically between 40 and 52 m above the Swift Formation (Richmond and others, 2021b). These are the first tufa mounds recorded for the Morrison Formation and are North America’s second oldest tufa deposits (Richmond and others, 2021b). The mound springs indicate long durations of groundwater discharge at the surface. The mound springs’ oxygen and carbon isotopic data indicate they are ambient water-temperature tufa mounds. The δ¹⁸O data matches the expected paleolatitude of the region. The δ¹³C data indicates a short residence time for the groundwater in the subsurface.

Interestingly, variation in the data sets provides...
additional insights into the paleoclimate. A few more negative δ18O values infer there may have been precipitation input from northern storms from the retreating Sundance sea. A cluster of more negative δ13C values also implies drier periods. The average annual temperatures most favorable to tufa formation and growth are between 5° and 15° C (Pentecost, 1991; Ibarra and others, 2014). Therefore, the mound springs' occurrences in central Montana indicate a regular high precipitation rate with cool paleotemperatures (Richmond and others, 2021b; column G on figure 19).

Micrite and Mudstone Beds (Upper Section)

Southwest of Button Butte is a laterally limited outcrop of the uppermost Morrison Formation stratigraphic section. The exposed outcrop begins at 55 m above the Swift Formation and extends to the basal Kootenai Sandstone bed (72 m). The uppermost section is dominated by mudstone; however, four micrite beds are in the section's lower part. The lowest micrite bed is stratigraphically at 56.6 m, and the uppermost bed is at 60.7 m. The 20- to 50-cm-thick micritic beds are separated by 1.5 m of mudstone beds. The micrite beds indicate the presence of shallow ponds or lakes of unknown size. The intercalated mudstone and micrite beds suggest dry intervals followed by periods of increased precipitation (column H on figure 19).

Morrison Formation Coal Strata

High volatile bituminous coal beds are known from the uppermost stratigraphic section of the Morrison Formation of central Montana (Daniel and others, 1992). Overlying the coal strata is the K-1 unconformity and basal Kootenai sandstone bed (Harris, 1966; Daniel and others, 1992). However, in the early days of exploration, researchers interpreted the coal beds as part of the “Kootanie” Series, a name proposed by Dr. George M. Dawson in 1885 for the Indian tribe that had previously hunted the region (Fisher, 1908; Knowlton, 1908). Geologists of the Transcontinental Survey and the Yellowstone and Missouri River exploration party in 1860 first reported on the coal beds of central Montana (Hayden, 1869). Fisher (1909) lists a comprehensive literature review of the pre-1909 publications. Newberry (1888) briefly mentioned “Kootanie” age (Lower Cretaceous) coals at the Falls of the Missouri River (i.e., Great Falls, Montana). Newberry (1891) later reviewed the fossil flora from the coal beds of Sand Coulee and Belt Creek, Montana, saying that coal miners had reported fern impressions in the coal. Based on the coal plant fossils and their comparison to other formations, Newberry maintained that the coal was of Lower Cretaceous age. Fontaine (1893) reviewed a small collection of plants preserved from the coals and said that the sample consisted of fossil plants from the families of Polyplodiaceae, Equisetaceae, Cycadaceae, and Coniferae. Knowlton (1908) completed a more in-depth fossil plant review from the coals and added the family Ginkgoaceae to the then-known fossil plant varieties.

The first geological evaluation of the Great Falls coal was performed by Weed (1892), who measured the coal beds as more than 3 m thick and intercalated with thin shale beds. The coal beds are overlain by a prominent sandstone ledge that measures up to 15 m thick (i.e., Kootenai basal sandstone bed). Fisher (1907) erroneously placed the coal-bearing strata in the overlying Kootenai Formation and reported that the coal beds were 18 m above the base of the formation. The following year, Fisher (1908) suggested that the central Montana coal strata correlated to other coal beds to Cretaceous-aged coal strata around Montana and the Cloverly Formation of the Bighorn Basin. Fisher (1909) described the general geology of the Great Falls area, including the coal beds, whereas Calvert (1909) explained similar parameters for the Lewistown area and its coal field. Since then, several papers have further discussed the geology and economic importance of the coal (Harris, 1966, 1968; Silverman and Harris, 1966, 1967).

Although the coal's fossil plants, stratigraphy, and economic aspects have been evaluated, the depositional facies that produced the coal still needs to be sufficiently explored. Daniel and others (1992) propose that the Morrison coals formed in situ in flooded swamps composed of ginkgophytes and other plant materials. Based on the abundant layers of fusain, Daniel and others (1992) also suggested that the marshes occasionally burned and were later followed by clay-rich sediment.
Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana
Richmond, D.R.

deposition. Although a large-scale depositional model has yet been proposed for the Morrison coal strata, the freshwater coal swamps likely formed on the prograding fluvial plain. Interestingly, the Upper Jurassic-Lower Cretaceous coal strata of the Kootenay Formation of the southern Canadian Rocky Mountains were formed by deltaic accretion of coastal marshes that developed on a prograding coastal plain (Jansa, 1972).

Coals require abundant plant growth from high precipitation, poor drainage on low gradient topography, or changes in the eustatic sea level (Parrish and others, 1982). Based on the previously described lithologic proxies, the Morrison coal beds were likely formed in an environment with high precipitation and/or poor drainage. The presence of abundant plants to generate greater than meter-thick coal beds indicate climatic conditions were suitable for copious plant growth for long durations. However, the presence of fusain and clay-rich interbeds suggest that unfavorable climatic conditions were sufficiently long to dry the swamps and enable fires to burn them (i.e., droughts; column I on figure 19).

BIOLOGIC CLIMATIC PROXIES

Modern terrestrial fauna and flora are assembled by climatic zones in which they reside. The preferred climatic zone and their biological characteristics have been used repeatedly to develop paleoclimatic interpretations.

Vertebrate Proxies

Currently, the dinosaurs discovered in the research area include *Hesperosaurus* (Saitta, 2015; Maidment and others, 2016, 2018), *Camarasaurus* (Woodruff and Foster, 2017), *?Haplocanthosaurus*, *?Camptosaurus*, *?Suuwassea*. Dinosaurs are suggested to have elevated metabolic rates more akin to living endotherms. Therefore, their fossil record and bone growth are not as reliable proxies for climatic changes as those of other organisms. Semi-aquatic vertebrates, including crocodiles and turtles, have bone tissue that does show environmental sensitivity. Connely's (2006) unpublished report stated that fossil turtle, crocodile, and possibly amphibian material was recovered from the bivalve splay mudstone bed, but this material has not been located. No additional environmentally sensitive fossil vertebrates have been reported.

Invertebrate Proxies

Bivalvia

A gray-green fossiliferous mudstone bed stratigraphically 19 m above the Swift Formation (column H on figure 10), is interpreted to be a flood splay deposit because of the diversity and concentration of fossil material (Richmond and others, 2017). The bed contains seven genera of bivalves, including *Unio felchi*, *U. mammillaris*, *U. nucalis*, *U. stewarti*, *Vetulonaia whitei*, and *V. mayoworthensis* (figure 24A). Thick- and thin-shelled ecophenotypes are represented, indicating lotic and lentic environments. Gastropods (*Viviparus* and *Tropidina*), ostracods (*Alicenula*, *Candona*, *?Cetacea*, and *T erosynoeicum*), and charophytes (*Aclistochara*, *Mesochara*, and *Porochara*) are also represented. Fish bones and piscivorous teeth were also recovered (Richmond and others, 2017).

The *Unio* and *Vetulonaia* specimens are the largest recorded sizes for the Morrison Formation (> 13 cm). This indicates a long-lived salubrious perennial clear freshwater environment. Ten shells were thin-sectioned to observe the growth bands. Thin closure lines demarcate the various growth bands. Interestingly, the observed bandwidths correlate among the specimens. Thin bands represent short periods of adverse conditions due to turbidity from seasonal storms or eutrophication. The paleoclimate, as recorded by the bivalves, showed negligible seasonal variation but was punctuated by occasional storms (column J on figure 19).

A single thick-shelled bivalve, *V. mayoworthensis*, was found in a green-gray mudstone bed at 65.7 m. The genus is interpreted to inhabit lentic environments and was likely deposited onto the floodplain by a flood splay. The bivalve indicates the presence of a lentic freshwater body nearby (stratigraphic column I on figure 10 and column J on figure 19).
Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana

Richmond, D.R.

Stratigraphy, Sedimentology, and Paleoclimatic Proxies of the Upper Jurassic Morrison Formation of Central Montana
Richmond, D.R.
Geology of the Intermountain West 2023 Volume 10

The fossiliferous flood splay bed at 19 m also contained the prosobranch gastropod genera Viviparus and Tropidina (Richmond and others, 2017). Prosobranchs of the Morrison Formation are interpreted to have lived in perennial well-oxygenated lentic environments (Evanoff and others, 1998). Neither gastropod genera have any biostratigraphic significance for the Morrison (Evanoff and others, 1998). The depositional environment inferred from the gastropods correlates with that designated by the bivalve genera (column K on figure 19).

Ostracoda

Ostracods are abundant in the calcareous shales and limestones of the Morrison Formation in central Montana (Peck, 1956, 1957, 1959). Unidentified ostracods are present in the lacustrine/palustrine micrite beds (Johnson-Carroll, 2014) of the paleolake at 13 m. The gray-green illitic fossiliferous bed at 19 m contains the ostracod genera Alicenula, Candona, ?Cetacella, and Theriosynoecum (Richmond and others, 2017). Near Button Butte there is a 5-m exposure of four interbedded micrite and mudstone beds (column I on figure 10). The micrite beds vary from 20 to 50 cm in thickness. A limited outcrop exposure constrains an assessment of the lateral extent. The micrite and mudstone beds represent a shallow paleolake. The uppermost and thickest bed (60.5 m above the Swift Formation) is an ostracodal biomicrite with numerous separated ostracod valves and unidentified charophyte gyrogonites. Fortuitously, there are also some exceptionally preserved ostracods. A magnificently preserved ostracod specimen is identified as a female Theriosynoecum individual showing preserved anterior and posterior duplicatures (figure 24B). Theriosynoecum is a representative Upper Jurassic-Lower Cretaceous genus (Horne, 2002). The ostracod taxa indicate perennial freshwater bodies with no seasonal drying indicating precipitation exceeded evaporation (B. Sames, University of Vienna, written communication, 2021) (column L on figure 19).

Palaeobotanical Proxies

Fossil Wood

In contrast to Brown (1946), who stated the Morrison Formation in Montana is “practically barren of plant
fossils throughout most of its sequence; in the formation research area, fossil wood is abundant throughout the section. The majority of the fossil tracheidoxyls are found between 40 and 60 m above the Swift Formation. Fossil wood preservation varies from extremely well (Richmond and others, 2019d) to poor. To date, five fossil wood genera have been described, including Xenoxylon (Richmond and others, 2019d), Piceoxylon (Richmond and others, 2019b), Circoporoxylon (Richmond and others, 2019c), Cupressinoxylon (Richmond and others, 2021a), and Protocedroxylon (Richmond and others, 2022). Two wood genera (Xenoxylon and Circoporoxylon) are associated with or are encased in mound spring deposits (Richmond and others, 2021b). Ten Xenoxylon fossil sites have been identified (in stratigraphic order: FB PW1, RR PW1, 5E PW20, 5E PW17, 5E PW18, 5E PW21, 5E PW6, 5E SQRT, 5E PW5, and 5E WTFA; table 2) showing a current stratigraphic range for the genus that extends from approximately 17 to 51 m (column M on figure 19). The numerous discoveries indicate that Xenoxylon was an integral part of the Jurassic paleoforest and that the climate in central Montana was suitable for its proliferation. Five Circoporoxylon fossil sites have been identified (5E PW16, 5E PW14, 5E TUFA1, 5E TUFA2, and 5E PW13; table 2). The current stratigraphic range of the known Circoporoxylon sites is 35 to 46 m (column N on figure 19). Three Cupressinoxylon fossil sites have been identified (5E TUFA4, 5E PW33, and 5E CSPW; table 2). The current stratigraphic range of the known Cupressinoxylon sites is 46 to 53 m (column O on figure 19). One Piceoxylon fossil site has been identified (5E TREE1; table 2) at 25 m (column P on figure 19). One Protocedroxylon fossil site has been identified (5E PW4; table 2) at 46 m (column Q on figure 19). The same boreal wood genera have been reported together in the high-latitude boreal forests of the Cretaceous Period of North America (Harland and others, 2007). The Upper Jurassic fossil wood assemblage and in particular Xenoxylon, are suggestive of a cool/wet climate (Philippe and Tévenard, 1996; Marynowski and others, 2008; Philippe and others, 2009, 2017; Tian and others, 2016). The occurrence of these five boreal fossil wood genera designates that for the stratigraphic interval from 17 to 53 m, the climate was cool and/or wet (Richmond, 2023).

Macro and Microfossil Flora

Additional Coniferales from the Morrison Formation of central Montana include Podozamites lanceolatus (Podocarpaceae), Pityophyllum lindstromi (Gnetophyta), Pityocladus sp. (Cycadophyta), and Pagiodaphyta sp. (Brown, 1972). Based on palynology, the families Pinaceae and Podocarpaceae were also present (Hotton and Baghai-Riding, 2010). Subdominant understory woody plants included Cycadales (Zamites arcticus, Ginkgoales (Ginkgoites marginata, Ginkgoites pluripartita), and Bennettitales (Cycadolepis sp., Nilssonia compacta, and Weltrichia sp.) (Brown, 1972). The groundcover in the Late Jurassic of central Montana was comprised

<table>
<thead>
<tr>
<th>Sample</th>
<th>Assigned fossil wood genus</th>
<th>Stratigraphic position (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSN FB PW1</td>
<td>Xenoxylon</td>
<td>17.5*</td>
</tr>
<tr>
<td>MRSN RR PW1</td>
<td>Xenoxylon</td>
<td>17.9*</td>
</tr>
<tr>
<td>MRSN 5E PW20</td>
<td>Xenoxylon</td>
<td>42.5</td>
</tr>
<tr>
<td>MRSN 5E PW17</td>
<td>Xenoxylon</td>
<td>43.2</td>
</tr>
<tr>
<td>MRSN 5E PW18</td>
<td>Xenoxylon</td>
<td>43.4</td>
</tr>
<tr>
<td>MRSN 5E PW21</td>
<td>Xenoxylon</td>
<td>43.4</td>
</tr>
<tr>
<td>MRSN 5E PW6</td>
<td>Xenoxylon</td>
<td>44.1</td>
</tr>
<tr>
<td>MRSN 5E SQRT</td>
<td>Xenoxylon</td>
<td>45.4</td>
</tr>
<tr>
<td>MRSN 5E PW5</td>
<td>Xenoxylon</td>
<td>45.9</td>
</tr>
<tr>
<td>MRSN 5E WTFA</td>
<td>Xenoxylon</td>
<td>51.1</td>
</tr>
<tr>
<td>MRSN 5E PW16</td>
<td>Circoporoxylon</td>
<td>35.0</td>
</tr>
<tr>
<td>MRSN 5E PW14</td>
<td>Circoporoxylon</td>
<td>44.4</td>
</tr>
<tr>
<td>MRSN 5E TUFA1</td>
<td>Circoporoxylon</td>
<td>45.9</td>
</tr>
<tr>
<td>MRSN 5E TUFA2</td>
<td>Circoporoxylon</td>
<td>45.9</td>
</tr>
<tr>
<td>MRSN 5E PW13</td>
<td>Circoporoxylon</td>
<td>51.6</td>
</tr>
<tr>
<td>MRSN 5E TUFA4</td>
<td>Cupressinoxylon</td>
<td>45.9</td>
</tr>
<tr>
<td>MRSN 5E PW33</td>
<td>Cupressinoxylon</td>
<td>48.0</td>
</tr>
<tr>
<td>MRSN 5E CSPW</td>
<td>Cupressinoxylon</td>
<td>53.1</td>
</tr>
<tr>
<td>MRSN 5E TREE1</td>
<td>Piceoxylon</td>
<td>25.0</td>
</tr>
<tr>
<td>MRSN 5E PW4</td>
<td>Protocedroxylon</td>
<td>45.8</td>
</tr>
</tbody>
</table>

Table 2. List of currently identified fossil wood genera from the study area with each sample's stratigraphic position within the formation measured in meters above the Swift Formation. The samples with the associated asterisks show approximate stratigraphic positions.
of fungi, the sphenophyte Equisetum lateralis, the pteridophytes Hausmannia fisheri, Coniopteris hymenophylla, Adiantites montanensis, Cladophlebis heterophylla, and Cladophlebis virginiensis, and the pteridosperm Sagenopteris elliptica (Brown, 1972).

Brown (1972) reexamined previous late 19th-century fossil plant assemblages and collected additional fossil plants from several locations in central Montana. Brown’s fossil specimens were from carbonaceous shales of the formation’s upper strata. As mentioned, Brown (1972) identified a pteridophyte of the Dicksoniaceae tree fern family. Specimens from the Belt and Lewiston areas of Montana were described as the fern Coniopteris hymenophylla. Dicksoniaceae (Coniopteris) first appeared in the Early Jurassic (Seward, 1900; Vakhrameyev, 1964; Wang, 2002) and is found northern hemisphere in the Middle Jurassic (Vakhrameyev, 1964; Vaez-Javada, 2018; Xin and others, 2018; Yuan and others, 2019), Late Jurassic (Vakhrameyev, 1964; Brown, 1972; Miller, 1987; Ash and Tidwell, 1998), and Lower Cretaceous strata (LaPasha, 1982; Lapasha and Miller, 1985; Miller, 1987). C. hymenophylla is the only member of the Dicksoniaceae family recognized from the Morrison Formation (Ash and Tidwell, 1998) and has only a few occurrences. In addition to the locations in central Montana (Brown, 1972; Miller, 1987), it is also known from the Montezuma Creek locality in southeastern Utah (Ash and Tidwell, 1998), the Temple Park area near Cañon City, Colorado (Gorman and others, 2008), the Turtle Island plant site north of Vernal, Utah (Foster and others, 2003), and the Jurassic Sald Bar site in southeastern Utah (Foster and others, 2022, 2023). Additionally, C. hymenophylla has also been described from the Lower Cretaceous Kootenai Formation of central Montana (LaPasha, 1982; Lapasha and Miller, 1985; Miller, 1987).

The sterile and fertile pinna of C. hymenophylla (figure 25A) (E. Kustatscher, Museum of Nature South Tyrol, written communication, 2021) were recently discovered in a thin carbonaceous shale bed stratigraphically at 38 m in the study area. Foster and others (2023) differentiate between the fertile and sterile pinna, classifying the fertile pinna as Coniopteris and the sterile pinna as Sphenopteris.

Coniopteris is interpreted to be a small to large rhizomatous fern that grew in mesic environments (Deng, 2002). Numerous researchers propose that the paleo-ecology of the Coniopteris signifies a warm and mesic paleoenvironment (Wang, 2002; Vaez-Javada, 2018; Xin and others, 2018; Zhang and others, 2019) (column R on figure 19).

An unidentified pteridophyte was discovered in the same shale bed (figure 25B). Most fern diversity is encountered in mesic and warm environments. An unidentified ginkgophyte was also discovered in the same shale bed (figure 25C). Extant ginkgophytes prefer mesic environments but can tolerate a wide range of soil moistures and temperatures.

Palynology

Palynological studies of the Canadian Upper Jurassic Kootenay Formation are interpreted as the northern equivalent of the Morrison Formation in south-central Canada. The formation has numerous coal seams, and these were investigated for pollen in the 20th century by Berry (1929), Bell (1956), and Rouse (1959). Newman (1972) was the first to review the palynology of the Morrison Formation in Montana and only sampled one Morrison site. The majority of Newman’s paper discussed Cretaceous and Paleogene palynology. Four palynology samples are from a carbonaceous shale bed, 3 m stratigraphically below the Kootenai basal sandstone bed, 0.5 km south of Belt, Montana (Stop 6 of the 1966 Billings Geological Society 17th annual field conference,
p. 36; Newman, 1972). Newman only mentioned four palynological genera: Callialasporites dampieri, Eucommiidites, Classopollis, and Inapertisporites pseudoreticulatis. Newman specified that Eucommiidites were prevalent and that Classopollis were infrequent (table 3).

Litwin and others (1998) sampled the formation west of the Yellowstone River south of Livingston, Montana (samples R4684A, B) and along the eastern flank of Shell Mountain along the West Boulder Road southeast of Livingston (samples R4690A, C, E). Only data from samples R4690A, C, and E were published; however, no stratigraphic information was provided (table 3). Hotton and Baghai-Riding (2010) processed a sample collected near Belt, Montana; however, they did not publish the data. In the study area, a limited palynological sample was procured from a carbonaceous shale bed stratigraphically at 38 m above the Swift Formation (table 3). The mudstone sediments yielded several fossil pollen and spores (table 3). Several carbonaceous shales were also sampled but did not yield viable material, but each contained an abundance of fusain. The Morrison coals from the Five Fingers coal mine near Sand Coulee, Montana were also sampled. Palynomorph recovery was poor due to maceral debris and the degradation of the pollen. Some pollen were tentatively identified to the family and genus level including ?Araucariaceae,
Table 3. Summary of the palynological samples from the Morrison Formation of Montana. The table provides the taxonomical identification, the stratigraphic position above the Swift Formation, and the pollen's preferred moisture and temperature.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
<th>Position</th>
<th>Moisture</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newman, 1972</td>
<td>Pinopsida</td>
<td>Araucariaceae</td>
<td>Araucariaceae</td>
<td>Callialaspores</td>
<td>dampieri</td>
<td>69 m</td>
<td>wet to mesic</td>
<td>megathermic</td>
</tr>
<tr>
<td>Pinopsida</td>
<td>Cheirolepidiaceae</td>
<td>Cheirolepidiaceae</td>
<td>Classopollis</td>
<td>sp.</td>
<td>"</td>
<td>dry</td>
<td>megathermic</td>
<td></td>
</tr>
<tr>
<td>Gnetopsida</td>
<td>Erdtmanithecerales</td>
<td>Erdtmanithecerales</td>
<td>Eucommiidites</td>
<td>sp.</td>
<td>"</td>
<td>wet to mesic</td>
<td>eurythermic</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>Inapertispores</td>
<td>pseudoreticulatis</td>
<td>Unknown</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litwin and others,</td>
<td>Pinopsida</td>
<td>Pinales</td>
<td>Podocarpaceae</td>
<td>Pristinuspollenites</td>
<td>microsaccus</td>
<td>Unknown</td>
<td>mesic</td>
<td>megathermic</td>
</tr>
<tr>
<td>1998</td>
<td>Pinopsida</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Pityosporites</td>
<td>sp.</td>
<td>"</td>
<td>wet to mesic</td>
<td>mesothermic</td>
</tr>
<tr>
<td>Pinopsida</td>
<td>Schizaeae</td>
<td>Schizaeae</td>
<td>Conavisiimspores</td>
<td>montuosus</td>
<td>"</td>
<td>wet (locally)</td>
<td>megathermic</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>Schizaeae</td>
<td>Schizaeae</td>
<td>Conavisiimspores</td>
<td>irratus</td>
<td>"</td>
<td>wet (locally)</td>
<td>megathermic</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>Schizaeae</td>
<td>Anemiaceae</td>
<td>Cicatricosporites</td>
<td>sp.</td>
<td>"</td>
<td>wet (locally)</td>
<td>mesothermic</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>Osmundaceae</td>
<td>Osmundaceae</td>
<td>Todispores</td>
<td>minor</td>
<td>"</td>
<td>unknown</td>
<td>mesothermic</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>unknown</td>
<td>unknown</td>
<td>Granulatispores</td>
<td>dalyi</td>
<td>"</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>unknown</td>
<td>unknown</td>
<td>Ischysporites</td>
<td>disjunctus</td>
<td>"</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Lycopsida</td>
<td>unknown</td>
<td>Selaginellaceae</td>
<td>Neoralistriida</td>
<td>sp.</td>
<td>"</td>
<td>wet (locally)</td>
<td>eurythermic</td>
<td></td>
</tr>
<tr>
<td>Sphagnopsida</td>
<td>Sphagnaceae</td>
<td>Sphagnaceae</td>
<td>Sterispores</td>
<td>sp.</td>
<td>"</td>
<td>wet (locally)</td>
<td>eurythermic</td>
<td></td>
</tr>
<tr>
<td>?Marchantiopsida</td>
<td>unknown</td>
<td>unknown</td>
<td>?Hymenozonotrilites</td>
<td>mesozoicus</td>
<td>"</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Present study</td>
<td>Pinopsida</td>
<td>Pinales</td>
<td>Pinaceae</td>
<td>Alisporites</td>
<td>bilateralis</td>
<td>38 m</td>
<td>mesic</td>
<td>eurythermic</td>
</tr>
<tr>
<td>Pinopsida</td>
<td>Cheirolepidiaceae</td>
<td>Cheirolepidiaceae</td>
<td>Classopollis</td>
<td>sp.</td>
<td>"</td>
<td>dry</td>
<td>megathermic</td>
<td></td>
</tr>
<tr>
<td>Gnetopsida</td>
<td>Erdtmanithecerales</td>
<td>Erdtmanithecerales</td>
<td>Eucommiidites</td>
<td>troelsenii</td>
<td>"</td>
<td>wet to mesic</td>
<td>eurythermic</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>Cheirolepidiaceae</td>
<td>Cheirolepidiaceae</td>
<td>Eucommiidites</td>
<td>sp.</td>
<td>"</td>
<td>wet to subarid</td>
<td>megathermic</td>
<td></td>
</tr>
<tr>
<td>Polytopodiopsida</td>
<td>unknown</td>
<td>unknown</td>
<td>Cycadopites</td>
<td>fragilis</td>
<td>"</td>
<td>wide range</td>
<td>eurythermic</td>
<td></td>
</tr>
</tbody>
</table>

Table heading: Reference Class Order Family Genus Species Position Moisture Temperature
Gymnospermae: Callialasporites dampieri (Pinopsida/Araucariaceae). Callialasporites dampieri is a conifer pollen with affinities to either Araucariaceae or Podocarpaceae. However, a review of the ultrastructure of the exine designates the pollen genus as Araucariaceae (Batten and Dutta, 1997; Schrank, 2010). Callialasporites are present in the Salt Wash and Brushy Basin Members of the Morrison Formation in Utah (Tschudy and others, 1980, 1988; Hotton, 1986). The ecological range of modern Araucaria extends from rainforests to cool temperate forests. Extent Araucaria are generally hygrophytes and megathermic trees (Schrank, 2010; Zhang, 2022).

Pristinuspollenites microsaccus (Pinopsida/Pinales/Podocarpaceae). The genus is of en found with Alisporites and other mesic pollens. Extant Podocarpaceae are common to the Southern Hemisphere in tropical-subtropical climates and mountains, and are generally hygrophytes and megathermic trees (Zhang, 2022).

Parvisaccites sp. (Pinopsida/Pinales/Podocarpaceae). Extant Podocarpaceae are common to the Southern Hemisphere in tropical-subtropical climates and mountains, and are generally hygrophytes and megathermic trees (Zhang, 2022).

Alisporites bilaterialis (Pinopsida/Pinales/Pinaceae; f gure 26A). The genus is also present in the Kootenay Formation of British Columbia, Canada (Rouse, 1959). Extant Pinaceae are generally mesophytes and microthermal plants that grow in acidic, wet, or rocky habitats in northern temperate zones (Zhang, 2022).

Pityosporites sp. (Pinopsida/Pinales/Pinaceae). The genus is considered a bisaccate gymnosperm pollen with no known affinities (Ludvigson and others, 2010; Zhang, 2022). However, Hotton (National Museum of Natural History, written communication, 2022) believes that the genus is synonymous with Alisporites.

Rugubivesiculites sp. (Pinopsida/?Pinales/?Podocarpaceae). Rugubivesiculites is a bisaccate gymnosperm pollen with uncertain affinities (Falcon-Lang and others, 2003). Extant Podocarpaceae are common to the Southern Hemisphere in tropical-subtropical climates and mountains, and are generally hygrophytes and megathermic trees (Zhang, 2022).

Classopollis sp. (Pinopsida/Coniferales/Araucariaceae). The pollen genus is not found in the Salt Wash or Brushy Basin Members of the Morrison Formation in Utah (Tschudy and others, 1980, 1988); however, the Morrison Formation of Arizona and New Mexico is dominated by Classopollis (Hotton, 1986). Araucariaceae are drought-resistant xerophytes (Vakhrameyev, 1982; Zhang, 2022).

Eucommiidites troedsonii (Gnetopsida/Erdtmanithecaceae). The pollen mimics angiosperm pollen, although a recent review of the exine ultrastructure assigned this pollen to the Family Erdtmanithecaceae in the Order Erdtmanithecales (Tekleva and others, 2006). Eucommiidites are present in the Salt Wash and Brushy Basin Members of the Morrison Formation in Utah (Tschudy and others, 1980, 1988). Erdtmanithecaceae are considered xerophytes and eurythermal plants (Zhang, 2022).

Vitreisporites pallidus (Ginkgoopsida/Caytoniales/Caytoniaceae). Caytoniaceae is an extinct cosmopolitan seed fern family of small trees. Caytoniaceae fossils are found in deltaic and floodplain environments in subtropical regions suggesting they were hygrophytes and megathermic trees (Zhang, 2022).

Cycadophyta: Cycadopites fragilis (Bennettitales, Ginkgoales, or Cycadales; f gure 26D). Extant cycads are generally in tropical and subtropical zones occurring in the rainforest and open woodland habitats. They are mesophytic, megathermic plants (Zhang, 2022).

Pteridophyta: Cicatricosisporites sp. (Polypodiopsida/Schizaeales/Anemiaceae). The genus is found elsewhere in the Morrison Formation (Chure and others, 2006) and the Lourinhã Formation of Portugal (Mateus, 2006). Extant Anemiaceae mostly live in subtropical to tropical regions and are considered mesophytes and megathermic plants (Zhang, 2022).
Formation of Portugal (Mateus, 2006), and the Lower Cretaceous Yellow Cat Member of the Cedar Mountain Formation in Utah (Joeckel and others, 2019). Extent Lygodiaceae are hygrophytes and megathermic plants (Zhang, 2022).

Cycadopites fragilis (Polypodiopsida/Cycadaceae). Extant cycads prefer mesic and warm environments. (E) Dictyophyllidites sp. (Dipteridaceae) Extant Dipteridaceae prefer mesic and warm environments. (F) Unidentified fungal body (yellow arrow – 19 m above the Swift Formation) and spores (red arrow – 55 m above the Swift Formation). Fungal spores require moisture to grow and prefer warm environments. Red bars are 20 μm for all samples.

in tropical and warm-temperate regions from Asia to Australia, implying they are hygrophytes and megathermic plants.

Todisporites minor (Polypodiopsida/Osmundales/Osmundaceae). The genus is also present in the Salt Wash and Brushy Basin Members of the Morrison Formation in Utah (Tschudy and others, 1980, 1988). Extent Osmundaceae are mesophytic plants generally found in tropical climatic zones (Tryon and Tryon, 1982), implying they are hygrophytes and megathermic plants.

Granulatisporites dailyi (Polypodiopsida/uncertain pteridophyte, Ludvigson and others, 2010; Zhang, 2022).

Inapertisporites pseudoreticulatus (Polypodiopsida/uncertain pteridophyte, Chure and others, 2006; Lud-
The genus is also known from the Kootenay Formation of southeastern British Columbia, Canada (Rouse, 1959) and the Lurinhã Formation of Portugal (Mateus, 2006). Hotton (National Museum of Natural History, written communication, 2022) believes that the genus may be a “wastebasket” category for fungal, algal, or bryophytic taxa.

 race of \textit{Gleicheniidites} (Polypodiopsida/Gleicheniales/Gleicheniaceae).

 race of \textit{Ischyosporites} (uncertain Pteridophyta).

 \textit{Neoraistrickia} sp. (Lycopsida/Selaginellales/Selaginellaceae). \textit{Neoraistrickia}, a lycopsid, is an herbaceous vascular plant related to the club mosses. Extant Selaginellaceae are considered euryphytes and eurythermic plants (Zhang, 2022).

 race of \textit{Stereisporites} sp. (Sphagnopsida/Sphagnales/Sphagnaceae). Extent sphagnum mosses are cosmopolitan and are commonly found in wetlands. They are considered hydrophytes and eurythermic plants (Zhang, 2022).

 \textbf{Charophyta:} Stereisporites sp. (Sphagnopsida/Sphagnales/Sphagnaceae). Extent sphagnum mosses are cosmopolitan and are commonly found in wetlands. They are considered hydrophytes and eurythermic plants (Zhang, 2022).

 \textit{Charophyta:} Stereisporites sp. (Sphagnopsida/Sphagnales/Sphagnaceae). Extent sphagnum mosses are cosmopolitan and are commonly found in wetlands. They are considered hydrophytes and eurythermic plants (Zhang, 2022).

 race of \textit{Unidentified fungal bodies and spores} were found in the mudstones from 14 and 55 m stratigraphically above the Swift Formation (fig ure 10, columns H and F, respectively). Fungal spores require moisture to grow and prefer warm environments.

 \textbf{Fungi:} Unidentifi ed fungal bodies and spores were found in the mudstones from 14 and 55 m stratigraphically above the Swift Formation (fig ure 10, columns H and F, respectively). Fungal spores require moisture to grow and prefer warm environments.

 race of \textit{Uncertain Affinity: }?\textit{Hymenozonotriletes mesozoiicus} (?M archantiopsida). No information can be provided for this Litwin and others (1998) specimen since no known affinities exist.

 \textbf{Algal and Cyanobacterial Buildups}

 An organic fabric was discovered in mound spring CM 13 (45 m above the Swift Formation) that may be the tufa-associated green algae \textit{Oocardium stratum} Nägeli (see Richmond and others, 2021b, fig ure 7D). Tufas generally occur in regions with an annual rainfall...
of over 500 mm/year (Pentecost, 1991; Ibarra and others, 2014). Tufas with associated Oocardium commonly have rainfall that exceeds 1000 mm/year (Ibarra and others, 2014; Richmond and others, 2021b). The presence of fossil Oocardium specifies a high rainfall during the deposition of this mound spring.

Additionally, banded cyanobacterial microbialite buildups were fortuitously discovered in thin section on the upper surfaces of the thin (5 cm) sandstone splay beds (50 m) capping the Quarry 2 pluvial/fuuvial sequence (see figure 23, bed F). The banded buildups atop the sandstone beds indicate both a high-water table and the repeated reflooding of the distal crevasse splay beds (figure 4H). Cyanobacterial buildups are also found on dogtooth calcite crystals growing on the spring mounds (see Richmond and others, 2021b, figure 9A).

Carbonate spherulites, present in some of the spring mounds (48 to 50 m), were formed by a Jurassic variant of the betaproteobacteria Ralstonia eutropha H16 (see Richmond and others, 2021b, figures 9B and 9C). Cyanobacteria and Ralstonia eutropha H16 can grow over a wide temperature range. However, optimal growth occurs at warm temperatures (29 to 30°C; Lürling and others, 2013; Nowroth and others, 2016) (column U on figure 19).

CONCLUSIONS

The Upper Jurassic Morrison Formation in central Montana had yet to be sufficiently studied. The historical stratigraphic measurements of the formation vary greatly. Recent field measurements in central Montana indicate the formation is 72 m thick. A review of well-log data over central Montana shows that formation does display variation, but the average thickness over the region is 71 m. The thickest part of the formation is in northeastern Wheatland County, suggesting a distributive fuuvial system migrating from the southwest. There is no discernable well-log marker across the region nor consistent change in lithology to warrant a division of the formation into members. Although there is no distinguishable break in the formation to separate it into members, the lower mudstone interval is interpreted as the distal fluvial depositional facies. The upper depositional facies marks a transition to a mudstone-dominated, anastomosing fuuvial depositional facies. The fuuvial facies consist of small, isolated, fine-grained anastomosing channel beds, and thin crevasse and splay beds.

Based on climate models and lithologic proxies, many researchers have proposed the Morrison foreland basin experienced a semiarid to arid zonal climate. Climate proxies provide an interpretation over a short climatic window; however, a comprehensive proxy assemblage compiled over a stratigraphic range and confined to a specific region delivers a full view of the climatic past. The retreat of the Sundance seaway and its proximity to the northern part of the Morrison foreland basin...
basin had a dramatic effect on the paleoclimate of the region. The compilation of lithologic, faunal, and floral proxies from the northern part of the basin recorded in sediments in central Montana demonstrates the climate in this region was wetter than in more southern parts of the Morrison foreland basin (figure 27). Based on the numerous climatic proxies, environmental conditions were not static but indicate that the Late Jurassic of central Montana experienced an overall subtropical humid/dry climate with intervals of temperate oceanic climate.

ACKNOWLEDGMENTS

I am grateful to the Hein, Klakken, and Finkbinder families, who provided access to their ranches for a field review of the geology. With their permission and support, this research was accomplished. I especially thank David Hein of Billings, Montana, for his passion for this research and his assistance in many aspects of the research. I am grateful to Nate Murphy, who started me on this project and assisted in providing support and discussion. I appreciate Bethany Schatzkes (Rocky Mountain College, Billings, Montana) for her tireless efforts in producing research papers. For this project, TGS-NOPEC Geophysical Company donated access to the digital and raster well logs for Fergus County, Montana, and surrounding areas. A special acknowledgment is due to Harry Rowe, who completed the geochemical analysis of the mudstones and sandstones at the Bureau of Economic Geology at the University of Texas, Austin. I appreciate Katherine Huntington and Keith Hudson (University of Washington, Seattle) for performing the clumped isotope analysis. Richard Lupia (University of Oklahoma) and Carol Hotton (National Museum of Natural History) freely assisted with the paleobotany. Benjamin Sames (University of Vienna, Austria) aided with the identification of invertebrates. Quintin Carlson assisted with the GIS data in mapping the Morrison Formation. Jim Shaffer, Mitch Lukens, Serena Celestino, Linda Freeman, Deana and Michael Richmond assisted with the surveying and the stratigraphic measurements. And finally, I am grateful for all the field collectors who took their time to dig and study dinosaurs in Montana. As is often the case with a large project with such a broad scope, many unmentioned contributed their time and talents in helping to accomplish this work. Kenneth Carpenter, University of Colorado Museum, Boulder, Colorado, and Thomas Chidsey, Utah Geological Survey Emeritus, and John Foster, Utah Field House of Natural History State Park Museum, carefully reviewed and significantly improved the manuscript. I am very grateful for Doug Sprinkel, Utah Geological Survey Emeritus, for his editing efforts and the time devoted to its publication.

REFERENCES

Baghai-Riding, N.L., and Hotton, C., 2011, Regional climatic signals masked by local factors in the Late Jurassic Morrison palynoflora [abs.]: Botanical Society of America Abstracts with Programs, Abstract ID 1051.

Baghai-Riding, N., Hotton, C., Davies, K., and Davidson, T., 2015, Palynological evidence for a latitudinal moisture gradient in the Late Jurassic Morrison Formation [abs.]: Geological Society of America Abstracts with Programs, v. 47, no. 7, p. 143.

Carpenter, K., 2022, The lithostratigraphic Tidwell Member of the Morrison or Summerville Formation (Upper Jurassic)—who, what, where: Geology of the Intermountain West, v. 9, p. 49–114.

Geology of the Intermountain West 265 2023 Volume 10

Hutton, C.L., and Baghai-Riding, N.L., 2016, Palynology of the Late Jurassic Morrison Formation—new insights into floristics, palaeoclimate, phytogeography and tetrapod herbivory [abs.]: Society of Vertebrate Paleontology Abstracts with Programs, p. 157.

Kantor, D.C., 1995, Stratigraphy and sedimentology of the Upper Brushy Basin Member, Morrison Formation (Upper Jurassic), eastern central Utah: Madison University, Wisconsin, M.S. thesis, 114 p.

Mateus, O., 2006, Late Jurassic dinosaurs from the Morrison Formation (USA), the Lourinhã and Alcobaça Formations (Portugal), and the Tendaguru Beds (Tanzania)—a comparison, in Foster, J.R., and Lucas, S.G., editors, Paleontology and geology of the Upper Jurassic Morrison Formation: New Mexico Museum of Natural History and Science Bulletin 36, p. 223–231.

Myers, T.S., 2009, Late Jurassic paleoclimate of Europe and Africa: Dallas, Texas, Southern Methodist University, Ph.D. dissertation, 204 p.

Richmond, D.R., 2023, A strange wood in a strange land—the palaeoecology of the fossil wood Xenoxylon in the Late Jurassic of North America: The Anatomical Record, v. 306, p. 218‒220.

Richmond, D.R., and Murphy, N., 2020, Stratigraphy, sedimentology, and depositional facies of the Morrison Formation 5ES Quarry of central Montana [abs.]: Geological Society of America Abstracts with Programs, v. 52, no. 6, paper 3-12.

Sames, B., Schudack, M.E., and Cifelli, R.L., 2008, Western Interior Early Cretaceous hiatus likely to be much shorter than previously reported—new biostratigraphic results derived from nonmarine ostracod correlations [abs.]: Geological Society of America Abstracts with Programs, v. 60, p. 540.

Seward, A.C., 1900, Catalogue of the Mesozoic plants in the Department of Geology, British Museum (Natural History), Vol. 3—T e Jurassic flora; I. T e Yorkshire Coast; plates I–XXI, 341 p.

Styles, E., 2014, T e Little Snowy Mountains Sauropod—a taphonomical study: Devon, United Kingdom, School of Geography, Earth and Environmental Sciences, University of Plymouth, Unpublished report, 47 p.

Vaez-Javadi, F., 2018, Middle Jurassic flora from the Hojedk Formation in Tabas, central east Iran—biostatigraphy and palaeoclimatic implications: Rivista Italiana de Paleontologia e Statigraphia, v. 124, p. 299‒316.

