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ABSTRACT

Triassic dinosaurs represent relatively rare but important components of terrestrial faunas across Pan-
gea. Whereas this record has been well studied at various locales across the American West, there has been
no previous systematic review of Triassic material assigned to Dinosauria from Utah. Here, we critically
examine the published body fossil and footprint record of Triassic dinosaurs from Utah and revise their
record from the state. In addition, we describe a sacrum from a locality within the Upper Triassic Chinle
Formation of southeastern Utah. This specimen represents the only unambiguous Triassic dinosaur body
fossil from Utah. MWC 5627 falls within the range of variation known for sacrum morphology from Coe-
lophysis bauri. Based on a literature review and examination of specimens available to us, we restrict the
Triassic Utah dinosaurian record to Theropoda from the Chinle Formation. Preliminary reports of Triassic
dinosaurs from other clades and formations in Utah are unsubstantiated.

INTRODUCTION

Theropod dinosaurs are an important but rare com-
ponent in terrestrial faunas from the Triassic of western
North America (Nesbitt and others, 2007). Although
several taxa have been identified from New Mexico, in-
cluding Coelophysis bauri (Colbert, 1989; Rinehart and
others, 2009), Gojirasaurus quayi (Carpenter, 1997),
Chindesaurus bryansmalli (Irmis and others, 2007),
Tawa hallae (Nesbitt and others, 2009), and Daemon-
osaurus chauliodus (Sues and others, 2011), the sur-
rounding continental deposits have produced little
in the way of dinosaurian body fossils. In contrast, an
apomorphy-based study by Nesbitt and others (2007)
examined all referred dinosaurs from the Triassic of
western North America and found only Caseosaurus

crosbyensis (Long and Murry, 1995) present in Texas.
The same study found only two theropods, C. bryans-
malli (Long and Murry, 1995) and a coelophysoid (Pa-
dian, 1986) from Arizona. Nesbitt and others (2007) did
not find references to Triassic theropods in Colorado
and Utah. Unfortunately, that review did not assess re-
ported dinosaurian remains from the Four Aces mine
locality near the Glen Canyon National Recreation Area
in southeastern Utah (Parrish, 1999) (figure 1). In a re-
lated study, Irmis and others (2007) found reports that
described ornithischian dinosaurs from the Triassic of
North America had been misinterpreted, although this
study also overlooked the Parrish (1999) report from
southeastern Utah.

Various methods have been proposed to explain
the distribution of dinosaurs in North America. The
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Figure 1. Map of Utah's Triassic dinosaur occurrences.
CC = Corral Canyon, FA = Four Aces.

current consensus is that the radiation of Dinosauria
across the globe was diachronous (Nesbitt and others,
2009; Irmis and others, 2011; Kent and others, 2014; see
Ramezani and others, 2011, for a dissenting view). The
earliest records of all major dinosaurian clades came
from southern Pangaea in the Carnian Stage of the Late
Triassic Epoch, followed by later appearances in the
Norian and Rhaetian Stages in the north of the super-
continent (Rauhut and Hungerbiihler, 2000; Parker and
Martz, 2011). Dinosaur body fossil remains from Utah
may help test some of these timelines and hypotheses by
providing additional data on dinosaur distribution and
the timing of this distribution.

Utah and western Colorado have a rich record of
vertebrate trace fossils from their Triassic rocks, includ-
ing many localities preserving Grallator, an ichnotaxon
traditionally identified as pertaining to theropod dino-
saurs (Riggs, 1904; Bunker, 1957; Parrish and Lockley,
1984; Hamblin and Foster, 2000; Foster and others,
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2001; Gaston and others, 2003; Santucci and others,
2006; Hunt and Lucas, 2007; Martz and others, 2014),
and some preserving the purported prosauropod track
Pseudotetrasauropus (Lockley and Hunt, 1995; Foster
and others, 2001). Recent work by other authors has
raised questions about the reliability of identifying di-
nosaurs from ichnological evidence alone (Olsen and
others, 1998; Marsicano and others, 2007; Brusatte and
others, 2011; Niedzwiedzki, and others, 2013; Farlow
and others, 2014). Although a poposauroid footprint
reconstruction based on an articulated specimen of Po-
posaurus gracilis from the Circle Cliffs of southern Utah
(Farlow and others, 2014) is somewhat similar to Gral-
lator, it is only so if the first digit never impressed. There
are a number of Grallator specimens from the Chinle
Formation in Utah and western Colorado that look
rather different at least from hypothetical tracks of po-
posauroids, and the fact that the ichnogenus continues
upward through the Wingate, Kayenta, and Navajo For-
mations (by which time poposauroids and other con-
vergent non-dinosaurs were extinct) suggests that many
tracks assigned to Grallator (though not necessarily all)
were likely made by theropods. The dinosaurian affinity
of Pseudotetrasauropus is perhaps a bit more tenuous, as
the morphology of these tracks can overlap to some de-
gree with those of several other tetradactyl ichnogenera
attributed to non-dinosaurian archosaurs known from
the Late Triassic (Lucas and Heckert, 2000). Thus, the
ichnological evidence for the presence of dinosaurs in
what is now the state of Utah during the Triassic Period
is to some degree ambiguous. There may likely be many
dinosaurian tracks among the specimens assigned to
Grallator and Pseudotetrasauropus, but it is possible that
some non-dinosaurian archosaurs made at least some
of the tracks historically assigned to these ichnogene-
ra from various localities, and distinguishing these will
require more studies of non-dinosaurian taxa (e.g., Far-
low and others, 2014).

Since 2005, several discoveries have taken place in
early Mesozoic strata across the western United States
that require us to revisit the Triassic record of Dino-
sauria from the state of Utah. Other workers have re-
ported on the presence of well-preserved coelophysoid
skeletons (Chambers and others, 2011; Britt and others,
2016) from the Nugget Sandstone in Dinosaur Nation-
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al Monument. Traditionally described as being Early
Jurassic in age, the Nugget has been attributed in lat-
er reports as being from the Late Triassic (Sprinkel and
others, 2011; Engelmann and others, 2012; Britt and
others, 2015, 2016; Irmis and others, 2015). Although
these specimens have not been formally described yet,
we think the initial evidence, which remains unpub-
lished but as been presented in poster and talk format
previously, matches with a Triassic age (Shumway and
others, 2016). Additionally, a site near Moab, Utah, has
yielded new remains that we refer here to theropod di-
nosaurs. The specimen described here has come from
the Chinle Formation and is thus unequivocally Late
Triassic (Norian-Rhaetian) in age (Martz and others,
2014 and references therein).

The purpose of the paper is to critically examine the
published record of Utah’s Triassic dinosaur fossils and
to determine whether previously described body fossils
can confidently be assigned to Dinosauria based upon
an apomorphic evaluation. Additionally, we describe
the first unambiguous dinosaur body fossil from the
Triassic of Utah using an apomorphic framework.

INSTITUTIONAL ABBREVIATIONS

AMNH - American Museum of Natural History,
New York (USA); CLMNH - Cleveland Museum of
Natural History, Cleveland, Ohio (USA); GR - Ghost
Ranch Ruth Hall Museum of Paleontology, Ghost
Ranch, New Mexico (USA); MNA - Museum of North-
ern Arizona, Flagstaff, Arizona (USA); MWC - Mu-
seums of Western Colorado, Fruita, Colorado (USA);
NMMNH - New Mexico Museum of Natural History
and Science, Albuquerque, New Mexico (USA); NMW
- Amgueddfa Cymru-National Museum Wales; PVS]J -
Instituto y Museo de Ciencias Naturales, San Juan (Ar-
gentina); TMP - Royal Tyrrell Museum, Drumbheller,
Alberta (Canada); UCM - University of Colorado Mu-
seum, Boulder, Colorado (USA).

STUDY METHODS

John Foster and Ray Bley collected the sacrum
(MWC 5627) in 2005, with locality data being on file at
the MWC’s Dinosaur Journey repository under Bureau
of Land Management (BLM) permit UT-S-05-014. The
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sacrum (MWC 5627) was collected from a boulder-size
block of conglomerate that had fallen off the outcrop
from a bed at the base of the Church Rock Member.
The sacrum was found in a small piece (less than than
25 cm) of conglomerate chiseled from the larger, fallen
block as part of the standard field procedure for pros-
pecting at this locality.

Specimen MWC 5627 was prepared over the years
by various volunteers at MWC, where it had been dam-
aged as the surrounding matrix was being removed.
John Foster and Robert Gay studied MWC 5627 in per-
son. Measurements were taken on the specimens using
Craftsman model 40257 sliding metal calipers (preci-
sion = 0.05 mm). Standard paleontological tools (dental
tools, ice picks, and natural-bristle brushes) were used
to collect all specimens.

Some of the comparisons between the specimens
described here and other taxa were made using in-per-
son examination of original specimens and casts; spe-
cifically for Coelophysis bauri. For other taxa, relevant
measurements were taken from the published scientif-
ic record. Photographs for figures were taken using a
Nikon D5100. Computer tomography (CT) images of
MWC 5627 were obtained at the Family Health West
hospital in Fruita, Colorado, on February 11, 2016, us-
ing an Optima CT scanner. Specific Kv values are re-
ported in figures obtained from CT imaging. CT data
were digitally prepared using InVesalius 3.0 (64-bit)
to create the three-dimensional (3D) digital model of
MWC 5627 using a 2186-3071 mask to initially isolate
the bones in the digital matrix, then using fine selec-
tion and deletion tools to remove high-density matrix
returns from the CT data. SedLog was used to make the
stratigraphic column and U.S. Geological Survey lith-
ological patterns were used. All figures were created in
GIMP 2.8.16.

LOCALITIES AND GEOLOGICAL SETTING

The Corral Canyon locality is north of Moab, Utah
(figure 1). There, the Chinle Formation consists of the
lower Kane Springs beds of Blakey and Gubitosa (1983,
1984; Martz and others, 2014, 2017) and the upper
Church Rock Member (Stewart and others, 1972; Matrtz
and others, 2014, 2017) (figure 2). The bed, from where
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Figure 2. Partial stratigraphic column of the Corral Canyon
locality, showing the location of MWC 5627 in relation to
stratigraphic position. See key for sedimentological symbol
details. Scale in meters. The complete stratigraphic column
is attached and can be view by clicking here.

block containing the sacrum (MWC 5627) broke off, is
at the base of the Church Rock Member in the lower
half of the 106-m-thick Chinle section; approximately
43 m above the Moenkopi-Chinle contact and 63 m be-
low the Wingate Sandstone (figure 2). There are three
conglomerate beds in the Chinle Formation at Corral
Canyon (from ~3 m above the base of the formation to
~18 m below the top), at least two of which were ob-
served to contain numerous teeth and bone fragments
of mostly phytosaurs. The Chinle in the Corral Canyon
area also contains abundant permineralized wood; ar-
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chosaur tracks are found in relative abundance near the
top of the formation near the contact with the Wingate
Sandstone (personal observations of John Foster and
Robert Gay). To protect the locality of the sacrum, a
stratigraphic section of the Chinle Formation from the
general area is used here to illustrate the stratigraphy of
the Chinle in Corral Canyon (figure 3), although this
section is thinned in comparison to the specimen's sec-
tion.

SYSTEMATIC PALEONTOLOGY

Dinosauria Owen, 1842; sensu Baron and other, 2017
Ornithoscelida Baron and others, 2017
Theropoda Marsh, 1881
Neotheropoda Bakker, 1986; sensu Hendrickx and others, 2015

Referred Specimen: MWC 5627, sacrum consisting of
two primordial sacrals, one inserted sacral, a dorsosa-
cral, and a caudosacral as well as fragmentary neural
arches.

Specimen MWC 5627 is a partial sacrum preserved
in a 30-cm-size block of conglomerate (figure 4). The
pebble to cobble conglomerate is comprised of well-ce-
mented, sandstone matrix with chert and clay clasts.
Clast size ranges from 1 to 5 cm. The sacrum consists
of three well-preserved complete and two partial, less-
well-preserved, sacral vertebrae, exposed on their ven-
tral and right lateral side. They contain impressions of
some of the vertebrae, along with some minor bone
fragments that do not provide any additional informa-
tion about the sacrum itself. Utilizing the CT data ob-
tained, we digitally prepared MWC 5627 to attempt to
better visualize the portion of the sacrum still within the
matrix, although the dense nature of the matrix and the
low power of the medical scanner, the resolution of the
CT images were not high. These data were informative
and are included as supplementary online materials.

Sacral vertebra 1 (SV1) is poorly preserved, although
when first discovered it was much more complete. Col-
lection damage, along with some preparation damage,
have made interpretation of this element difficult. Par-
tial fusion between sacral vertebra 2 (S§V2) and SV1 can
be seen at two locations where SV1 remain; along the
left dorsolateral surface and again at the dorsal surface
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Figure 3. Section of the Chinle Formation near Corral Canyon, Grand County, Utah, looking west. Formation contacts are
solid yellow lines; Chinle members contact dashed. Two lower arrows mark two of three conglomeratic beds in Chinle; upper
arrow with question mark shows approximate laterally equivalent level of top conglomeratic bed in Corral Canyon. Although
this is not the section from where the sacrum was collected, the red circle marks approximate stratigraphic position of MWC

5627 near base of middle conglomerate. Scale bar = 12 m.

at the neural canal. The neural spine is likewise mostly
gone, possibly due to preparation damage. Despite the
damage, the centrum of SV1 is clearly hollow (figure 4).

SV2 is the first completely preserved vertebra in the
sacral series. It is fused to the sacral vertebra posteri-
or to it. It is incompletely fused to the sacral vertebra
3 (SV3). The anterodorsal gap is 8 mm antero-poste-
riorly and 5 mm dorsoventrally, making it roughly
ovoid in shape. Of the four gaps found in MWC 5627
this is the best preserved. Its relationship to the sheet of
bone forming the lateral surface of the SV2/SV3 neural
spines and sacral ribs is clear. It lies 4.5 mm posterior
to the attachment of the SV2 sacral rib and 6 mm of
fused neural spine are above its dorsal-most point. Its
posterior-most point is 1 cm anterior to the attachment
of the SV3 sacral rib. SV2 itself is cracked and repaired,
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hollow, and has an overall broader appearance than the
preceding sacral vertebrae.

SV3 is completely fused on the exterior of its articu-
lar surfaces to both SV2 and sacral vertebra 4 (SV4). The
posterior gap above the centrum is 7.5 mm in length an-
tero-posteriorly. A clear portion of bone is visible dorsal
to the centrum, representing part of the neural spine,
though it is not well defined in the CT data (online sup-
plementary data). SV3 is broken along the right lateral
surface, showing some of the hollow interior of the cen-
trum. The centrum being hollow is further supported
by the CT data.

SV4 is the largest and best preserved of the sacral
vertebrae. It is 2.6 cm in length antero-posteriorly, as
measured between the points of fusion along the artic-
ular surface on the right lateral surface. On the exposed
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Figure 4. MWC 5627 in left lateral and ventral views. LD = lateral depression; NS = neural spine; PDG = posterior dorsal gap;

SR = sacral ribs; SV = sacral vertebrae. Scale bar = 1 cm.

lateral surface, 5 mm posterior from the anterior artic-
ular surface and just ventral to the dorsal margin, there
is a slight depression on the centrum. This depression is
9 mm in length and 1 mm in depth at its deepest point.
Between the posterior articular surface and the attach-
ment of the sacral rib, dorsal to the centrum, there is an
8.5-mm-long break or gap allowing access to the neural
canal. This has also been infilled with matrix, but can be
clearly seen with both visual (figure 4) and CT imaging.
The tallest portion of the neural spine does not show up
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in the CT data. The posterior articular surface is well
fused around the rim, though CT data shows there to be
some unfused portion within the center of the articula-
tion, as between SV1/SV2 (figure 4). The anterior artic-
ular surface is 1.4 cm mediolaterally, as measured at the
dorsoventral midpoint, and 1.3 cm dorsoventrally, as
measured at the center of fusion between SV4 and SV3.

Sacral vertebra 5 (SV5) is the worst preserved ver-
tebra in the sacrum. SV5 is present as an anterior ar-
ticular surface in articulation with the adjoining sacral
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vertebrae. The articular surface is fused to SV4 around
the rim of the articular surface, but exhibits incomplete
fusion within the midpoint of this same surface. This is
visible in both examinations of the specimen itself as
well as in CT images of MWC 5627 (figure 4, online
supplementary data). The preserved portion of the cen-
trum is broken in several places, with the hollows in-
filled with a sand/clay matrix. The remains of the sacral
rib and neural spine are fused to those of SV4.

Overall the centra of MWC 5627 tend to be shallow
ventrally with progressively narrowing midcentra pos-
teriorly. The neural arches are broad and become com-
plex towards the caudal portion of the sacrum (though
this may be a product of preservation). The sacral rib
attachments arise from the anterior portion of the cen-
trum and posterior-most section of the preceding sa-
crum, almost obscuring the articular surface, especially
moving posteriorly. The preserved sacral ribs are ante-
ro-posteriorly elongate and laterally significant (1.2 cm
across for the sacral rib on SV4).

As mentioned above, some of the anatomical fea-
tures on the surface of the fossil, specifically the thin
bony struts of the neural spines and sacral ribs, are not
well resolved in the CT data. Whereas the CT data do
indicate that SV2-SV4 are relatively complete within
the matrix, the adjoining neural spines and ribs are not
likewise present. Because of the fact that portions of
these elements have been damaged during past physi-
cal preparation and that these elements are not visible
in CT image; we have refrained from further physical
preparation of MWC 5627 to avoid additional damage
or loss of data.

TAXONOMIC AFFINITIES

Possessing five sacral vertebrae is generally consid-
ered a synapomorphy for Neotheropoda (Padian and
others, 1999; Sereno, 1999a, 1999b), though it is known
that some basal ornithischians possess at least four and
possibly five sacral vertebrae, as in the case of Eocursor
parvus (Butler and others, 2007), and with Heterodon-
tosaurus having six (Sereno, 2012). Additionally, other
archosaurs occasionally have four sacrals and a dorso-
sacral (Nesbitt and others, 2007; Nesbitt 2011). Con-
sidering this, we restrict our comparisons to taxa with
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similar sacral vertebrae counts, but offer some brief
commentary on some taxa that still warrant consider-
ation.

Coelophysis bauri is the most common Late Trias-
sic dinosaur from North America. It has been described
from New Mexico (Colbert, 1989; Schwartz and Gil-
lette, 1994; Rinehart and others, 2009). Having one of
the largest sample sizes of all theropod dinosaurs from
the Mesozoic Era allows us to use a broad morphologi-
cal dataset to compare against MWC 5627.

Coelophysis bauri specimens AMNH 7228, AMNH
7229, AMNH 7245, CLMNH 10971-D2, NMMNH
P-42351, P-42353, and P-42580 (Rinehart and others,
2009) all exhibit a morphology similar to MWC 5627 in
that their SV4 and SV5 are not fused, and AMNH 7233
exhibits only partial fusion of SV4 and SV 5. Specimens
AMNH 7235, AMNH 7243, AMNH 7249, CLMNH
10971-D10, NMMNH P-44802, TMP 84-63-34, and
TMP 84-63-49, again from Rinehart and others (2009),
show SV4 and SV5 fully fused. This suggests that fusion
in the sacrum of coelophysoid theropods is variable and
that an unfused or partially fused SV4/SV5, as seen in
MWC 5627, does not preclude it from pertaining to a
coelophysoid. Coelophysoid sacral vertebrae are also
ossified into a ‘rod, with the centrum being obliterated,
as present in MWC 5627.

An additional coelophysoid sacrum (NMMNH
P-31661) sheds light onto the affinities of MWC 5627.
[lustrated by Nesbitt (2011, figure 29, p. 114), this sa-
crum shows the same broad, complex neural arches,
shallow vertebral centra becoming dorsoventrally deep
along the vertebral column, and high anteriorly situated
attachments for the sacral ribs. MWC 5627 also shares
with NMMNH 31661 several character states listed by
Nesbitt (2011) which differentiate the two from more
primitive archosauriforms, including the absence of
sacral centra articular rims. Although not autapomor-
phic for the genus, these states are at least present in
Coelophysis, for example. This contrasts with the other
archosauriform sacra illustrated and described along-
side NMMNH P-31661. Specimen MWC 5627 is also
visibly identical to NMMNH 31661.

Although most Triassic archosaurs possess at least
two sacral vertebrae, some members of the Poposauri-
dae have four or more (Weinbaum and Hungerbuhler,
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2007; Gauthier and others, 2011; Griflin and others,
2017). Although the published descriptions of Popo-
saurus sacra are severely limited, some comparisons
are possible. In Poposaurus, the first sacral vertebra is
roughly half the antero-posterior length of the third and
fourth sacrals. The second sacral is roughly a third lon-
ger antero-posteriorally than the third or fourth sacral.
In addition, only SV1-SV3 fuse, leaving SV4 unfused at
the posterior end of the sacrum. This differs from the
condition seen in MWC 5627, where at least four sacral
vertebrae are fused with the fifth, the posterior-most be-
ing partially fused. Even if poposaurids exhibit differing
levels of sacral fusion as does C. bauri, the comparative
dimensions of the preserved vertebrae, seen most sig-
nificantly in SV2 of MWC 5627 and Poposaurus speci-
men TMM-43683-1, rule out MWC 5627 as pertaining
to poposaurids. Furthermore, the Poposaurus sacrum
figured in Weinbaum and Hungerbuhler (2007), shows
additional differences in sacral vertebra morphology,
with Poposaurus sacral vertebrae being much more ro-
bust and with less mediolateral constriction in ventral
view. Shuvosaurus and Effigia have four sacral vertebrae
plus a dorsosacral (Nesbitt and others, 2007). In Shu-
vosaurus, Effigia, and in many theropods, the centrum
has been obliterated, leaving the sacral vertebrae fused
into a ‘rod’ (Nesbitt and others, 2007). This ossification
is present in MWC 5627 and does not appear present in
Poposaurus specimen YPM VP.057100.

Herrerasaurids are known from the Chinle For-
mation in Arizona and New Mexico, specifically the
taxon Chindesaurus bryansmalli (Long and Murry,
1995; Nesbitt and others, 2007, 2009). We have ruled
out herrerasaurids in our comparative analysis as her-
rerasaurids possess only two sacral vertebrae (Nesbitt
and others, 2007). Similarly, Eoraptor lunensis, a Tri-
assic sauropodomorph from South America (Sereno,
1999a), shows a reduced number of sacral vertebrae
(3) and Nesbitt and others (2009) reported that Tawa
hallae only possesses two sacrals. Like E. lunensis, Eo-
dromaeus murphi only possessed three sacral vertebrae
(Martinez and others, 2011). Although an actual num-
ber is not given for Dracoraptor hanigani, the published
record shows a minimum of two and possibly up to
three sacrals were present (Martill and others, 2016),
with possibly more being unpreserved or described.
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Silesaurus, a dinosauriform (Dzik, 2003) has four sacral
vertebrae. We, therefore, exclude all of these previously
described basal theropods and dinosauriforms as per-
taining to MWC 5627.

Although ornithischian dinosaurs are not cur-
rently recognized from the Triassic of North America
(Irmis and others, 2007), it is possible that the sacrum
of MWC 5627 could represent the first possible occur-
rence of this clade. The ornithischian dinosaur Eocursor
parvus (Butler and others, 2007) is described as having
at least four, and possibly five, sacral vertebrae; a char-
acter shared with MWC 5627. The sacral vertebrae are
not preserved themselves, but instead are interpreted by
the presence of neural arches lacking centra and sacral
rib attachment scars. This makes direct comparisons
between MWC 5627 and E. parvus impossible at this
time.

Out of all the possible taxa that preserve sacral ver-
tebrae from the Triassic of the western hemisphere, the
only one that shares any number of significant mor-
phological features (such as the number of sacral ver-
tebrae, roughly equal antero-posterior centra lengths,
and fusion of the sacral vertebrae) with MWC 5627 are
neotheropods. We hesitate to diagnose this sacrum to
the specific level, as specific autapomorphies for Coelo-
physis or other theropods are not present within the sa-
crum. Nevertheless, the characteristics described above
show that MWC 5627 is a neotheropod sacrum that
shows significant similarity in comparative dimensions
and overall morphology to that of Coelophysis, and we
diagnosis it as a neotheropod.

FOUR ACES MINE SPECIMENS

A study by Parrish (1999) found the presence of
possible theropod and ornithischian dinosaurs based
on the presence of several incomplete ungual phalanges
(UCM 76197), several caudal vertebrae (UCM 76198),
and a fragmentary right mandible (UCM 76501) from
the Four Aces mine locality near the mouth of White
Canyon (figure 1). The caudal vertebrae described by
Parrish (1999) were diagnostic based on the subhexago-
nal cross section in the vertebrae, which Parrish (1999)
claimed are diagnostic of C. bauri without supporting
evidence. From examination of C. bauri specimens at
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MNA, GRMP, and NMMNHS we do not agree that
C. bauri can be diagnosed from a subhexagonal cross
section of the caudal vertebrae (personal observation
of Robert Gay) as the morphology exhibited in undis-
puted C. bauri specimens tends to be more box-like, a
plesiomorphic condition within Archosauria. Based on
this, we disagree that the vertebrae are truly diagnostic
to Theropoda, or even of Archosauria. As for the pha-
langes (UCM 76197) and the mandible (UCM 76501),
both are too incomplete to be diagnostic. Parrish (1999)
indicates that most specimens are only possibly refer-
able to Theropoda, and cannot be confidently placed
within this clade. Considering the lack of synapomor-
phies present in the specimens described by Parrish
(1999), we disagree with the placement of the published
Four Aces mine specimens in Dinosauria. Instead, these
specimens are best considered Archosauriformes incer-
tae sedis until further work is conducted. In particular,
UCM 76501 is of interest considering that since 1999,
the ornithischian dinosaur record from the Triassic has
been substantially revised (Irmis and others, 2007).

RESULTS

A critical review of the published literature on dino-
saur remains from the State of Utah has revealed that all
previously described dinosaurian body fossils cannot
confidently be assigned to Dinosauria. The ichnofos-
sil record of Dinosauria is likely better but because of
substrate variation, convergence in the foot, and lack of
precise discriminate methods to differentiate between
theropods and non-dinosaurian archosaurs we urge
caution in interpreting footprints as unambiguously
dinosaurian. A sacrum from the Upper Triassic Chinle
Formation near Moab possesses characters indicating
a neotheropod origin and is referred to Neotheropoda
based on structural similarities and the morphology of
the sacral vertebrae. This specimen comprises the en-
tirety of the body fossil record of dinosaurs from the
Triassic Period in the State of Utah currently.

DISCUSSION

The Triassic Period, as preserved in the American
West, has offered some of the most complete specimens
of early dinosaurs ever found (Colbert, 1989). Despite
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this, dinosaur remains have proven to be rare outside of
special preservational environments, like those found at
Ghost Ranch, New Mexico. That so few specimens of
confirmed dinosaurs have been reported from the ex-
tensive outcrops of Utah and Arizona is surprising, but
given the diversity of large carnivorous and herbivorous
non-dinosaurian archosaurs during the Late Triassic, it
may be that dinosaurs were indeed rare in most Chin-
le environments. As Utah sits today (as it would have
during Chinle depositional times) at a higher latitude
than the extensive dinosaur-producing quarries of New
Mexico, these specimens further support previous hy-
potheses that dinosaur radiation was limited by many
factors including increasing paleolatitude (Irmis and
others, 2011; Whiteside and others, 2015). Additional,
more complete dinosaur specimens from Utah’s Triassic
will help further support or disprove this idea.

Our confirmation of Late Triassic dinosaurs in Utah
is based on rather fragmentary material, compared with
known specimens from New Mexico and Arizona. This
may not be surprising, as few specimens of any iden-
tity are known from mudstone deposits in Utah. Only
the Comb Ridge sites, Indian Creek, and some in the
Red Canyon, that we are aware of, regularly produce
vertebrate material from mudstone; very few identifi-
able archosaurian specimens from the Moab or Lisbon
Valley areas come from mudstones, and most originate
in conglomeratic beds, though this is likely due to a
sampling issue. Thus, the sacrum described here from
Moab and numerous phytosaur skulls found in Lisbon
Valley occur as isolated elements in conglomerates. The
fragmentary nature of the specimens from conglomer-
ates at more northern sites probably relates to an overall
sandier section comprising the Chinle in those areas;
Comb Ridge is more similar to sites in Red Canyon and
Arizona in having a higher percentage of mudstone
(Petrified Forest Member). As demonstrated by MWC
5627, a sacrum found in an area otherwise known for
only very fragmentary vertebrate remains in the Chinle,
more complete material may eventually be found near
Moab or in Lisbon Valley or many other areas in the
state. It is hoped that additional fieldwork in these areas
will add to our understanding of early dinosaur radia-
tion into the American Southwest.
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