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ABSTRACT
The discovery of the origin of iron in the Iron Springs mining district of southwestern Utah is a story of 

unconventional thinking based on detailed geologic mapping. This district, for many years the largest iron 
producer in the West, owes its resources to emplacement of three Miocene laccoliths of quartz monzonite 
porphyry. A visit to the geosite, in the outer part of one of them, The Three Peaks laccolith, reveals evidence 
of magma emplacement and mineralization of the overlying host rock. This outcrop formed by upward and 
outward bulging during intrusion of a rapidly congealing, crystal-rich magma. The pluton was emplaced 
remarkably close to the surface, about 1.2 miles (2 km) depth, and the ferromagnesian phenocrysts became 
unstable and broke down (deuteric alteration), releasing iron molecules into the hydrothermal solutions. 
As the magma solidified, subvertical extension joints formed. The radial joints in particular, oriented per-
pendicular to the intrusive contacts, allowed the iron-rich solutions to escape into the concordant upper 
contact of a pure limestone about 280 feet (85 m) thick. This limestone is the Co-op Creek Limestone 
Member of the Carmel Formation (Middle Jurassic). The joints tapped the solidifying crystal mush adja-
cent to the joints. The iron in the solutions replaced some or most of the Co-op Creek Limestone Member, 
creating huge ore bodies of hematite.
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INTRODUCTION
The Iron Springs mining district in southwestern 

Utah was for many years the largest iron district in the 
western U.S.A. Mining began with the Utah pioneers 
and in fact was the reason for establishing Cedar City, 
which is about 10 miles east of the district (figure 1), 
but production then was insignificant. Mining began in 
earnest in 1923, but iron production climbed spectacu-
larly during World War II (Bullock, 1970) and therefore 
the district was strategically important for the allies. At 
that time, as part of the war effort that involved most 

U.S. adults in some form or other, the geology of the 
district was studied through detailed geologic mapping 
and aeromagnetic surveys (by magnetometers in air-
craft), and ore bodies were identified and mined. Ore 
was shipped by train to blast furnaces that were built 
at Geneva, Utah (west of Provo) and at Pueblo, Colora-
do. Mining continued at high production after the war, 
with a spurt during the Korean War, and on through the 
1980s (MacDonald, 1991), closing in the mid-1990s. 
During this time, iron mining and businesses that de-
pended upon it were important employers in Cedar 
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City. Mining resumed in 2010 with ore extracted from 
the Comstock/Mountain Lion ore bodies on northeast-
ern Iron Mountain and shipped to China, but closed 
again in 2014 due to a drop in metal prices; the mine 
has since reopened.

This geosite is on the southwestern side of The Three 

Peaks intrusion, one of three mineralized plutons in the 
Iron Springs district. The site is significant because it il-
lustrates how careful field observation in the course of 
detailed geologic mapping explained how these huge 
iron-ore deposits probably formed. As intruding crys-
tal-rich magma solidified, extension joints formed to al-
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Figure 1. Location map of the Cedar City to The Three Peaks area, Iron County, Utah. The geosite is marked by a star. On 
the trip to the geosite, just before the turn to the Cedar City landfill, you will drive past a low barren hill just east of two for-
mer mine buildings (Utah Construction) that contains a spectacular angular unconformity. An unconformity is a surface of 
erosion, here beveled by stream erosion. When bedded sedimentary rocks below an unconformity have a steeper dip than 
the beds above the unconformity, it is an angular unconformity, for those strata were deformed before being eroded to a flat 
surface, then the beds above them were deposited on the surface. The rocks below this unconformity are steeply west-south-
west-dipping tan sandstone of the Iron Springs Formation, deformed during thrusting. The rocks above the unconformity 
are more gently south-dipping pink conglomerate of the Claron Formation, concordantly dipping off The Three Peaks in-
trusion to the north. The erosion to form the unconformity took place sometime between Late Cretaceous (about 100- to 
66-Ma) and early Eocene (56- to 34-Ma) time, a span of at least 30 million years. Paved Utah Highway 254, which you will 
follow through Iron Springs gap and past the angular unconformity, follows the Old Spanish Trail, partly chosen to go here 
because it allowed the travelers to stop at Iron Springs (labeled). Later, the springs were a watering hole for herds of cattle 
driven west during the mid- to late-1800s to Pioche and other mining districts to the west. The springs are a half mile (0.8 
km) west of our geosite turnoff, where some buildings may be seen. Beyond the springs, and where Highway 254 is going, is 
a complex of white buildings in the distance known as WECCO (Western Electro-Chemical Co.), a plant that manufactures 
ammonium perchlorate, a component of solid-rocket fuel. This plant is a renamed version of the PEPCON plant in the sub-
urb of Henderson, Nevada, that blew up in 1988, killing one and injuring 326 persons. For our geosite, turn northeast off the 
highway and cross the railroad tracks and Iron Springs Wash.
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low upward passage of iron-rich solutions derived from 
the breaking down (deuteric alteration) of iron-bearing 
mineral crystals. These solutions passed outward from 
the intrusive contacts to form replacement iron bodies 
in adjacent limestone strata. The results of deuteric al-
teration, explained below, are visible at the geosite.

The Iron Springs mining district occurs along the 
Iron Axis, a northeast-trending string of igneous plu-
tons of Miocene age. Three of these (The Three Peaks, 
Granite Mountain, and Iron Mountain intrusions) 
were mineralized, forming the district (Mackin, 1947b, 
1954, 1960, 1968; Blank and Mackin, 1967; Bullock, 
1970; Rowley and Barker, 1978; Barker, 1995; Rowley 
and others, 2006; Hacker and others, 2002, 2007).  The 
plutons of the Iron Axis are concordant (intrusive con-
tacts are parallel to the bedding of sedimentary country 
rocks), many of them demonstrably laccoliths. Lacco-
lithic plutons have upward-convex roofs and flat basal 
floors. Other workers in the district disputed the lac-
colith idea. Instead, while acknowledging that the roof 
was concordant, they argued that the lower part of the 
intrusion was a stock or plug whose contacts continued 
downward vertically. Bullock (1970) was particularly 
adamant in urging such a model. His reason, as with 
others, was that he could not see how huge hematite ore 
bodies could result from a laccolith. Evidence from later 
mapping of the plutons of the Iron Axis (e.g., Blank and 
others, 1992; Hacker, 1998; Hacker and others, 1996, 
2002, 2005, 2007) disclosed more laccolith floors. Ad-
ditionally, a petroleum exploration drill hole was spud-
ded in the Iron Springs Formation west of the exposed 
part of The Three Peaks intrusion and passed entirely 
through the intrusion (a thickness of 2586 feet, or 788 
m) and into a floor of the Carmel Formation and Na-
vajo Sandstone, demonstrating a laccolith origin (Van 
Kooten, 1988).

Huge stratabound ore bodies of mostly hematite 
occur sporadically around the intrusive margins of the 
three plutons. The hematite replaced, volume for vol-
ume, limestone of the Carmel Formation (Jurassic) that 
is essentially adjacent to the intrusive contacts. The ore 
was mined by steam shovels in open pits, and some of 
the huge holes that remain now on the eastern side of 
Granite Mountain are ignominiously being filled in by 
Cedar City’s garbage, as landfills (figure 2). Magnetite, a 

higher grade of iron ore but more difficult to smelt, also 
was mined, but a much smaller volume. The magnetite 
occurs in “veins” or “dikes,” as much as 10 feet wide, 
within the plutons.

Most information on the ore deposits of the Iron 
Springs district during World War II came from 
plane-table mapping (at scales of 1:1200 to 1:4800, in-
cluding the topography inasmuch as no detailed topo-
graphic maps existed at the time) and related field and 
laboratory studies by J. Hoover Mackin. Mackin was a 
Professor in the Department of Geology at the Univer-
sity of Washington before and after the war, but during 
the war was employed by the U.S. Geological Survey 
(USGS). Magnetometer surveys and diamond drilling 
accompanied the mapping, as he and assistants worked 
closely with economic geologists, geophysicists, and 
drillers employed by the U.S. Bureau of Mines and by 
the three mining companies in the district, U.S. Steel, 
CF&I Steel, and Utah Construction and Mining. After 
the war, Mackin published his scientific conclusions. 
These included geologic maps, aeromagnetic surveys, 
and summary reports on the district, as well as reports 
on more regional aspects that resulted from his discov-
eries during his war efforts, such as structural geology 

Figure 2. View north into the Armstrong pit at Granite 
Mountain, now the site of the Cedar City landfill. Note the 
warped, near-vertical Iron Springs strata in the pit wall on 
right (east); the Granite Peak intrusion forms the left (west) 
wall of the pit. The Three Peaks is visible in the distance. Pho-
to courtesy of Tyler Knudsen.
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and the volcanic rocks. Back at the University of Wash-
ington, and later when he was hired by the University of 
Texas, Mackin enlisted the aid of his graduate students 
in at least a dozen masters and doctorate studies of the 
geology of areas in and extending outward from the dis-
trict. Rowley was Mackin’s last graduate student to fin-
ish his studies before Mackin died in 1968. Best known 
as a geomorphologist, Mackin in fact was a genius and a 
great field geologist, whose sense of humor and larger-
than-life personality helped make him the best teacher 
Rowley and virtually all other students who took his 
classes ever had. He received many awards and was a 
member of the National Academy of Sciences, but trag-
ically he died early (not yet 63 years old) of a bad heart 
valve (Anderson and others, 2001). He was a generalist 
who did his best thinking in the field, but hardly an ex-
pert on mineral deposits. His brain and mapping skills 
nonetheless led to an innovative hypothesis for the ori-
gin of the ore deposits at Iron Springs. Then he reached 
out to collaborators who were excellent economic ge-
ologists and petrologists, and with their counsel he re-
fined his ideas. Much of the evidence for his hypothesis 
on the origin of the iron deposits came from The Three 
Peaks intrusion, although it had the fewest ore bodies, 
and the geosite is here. Mackin’s hypothesis was given in 
abstracts in 1946-1948 (Mackin, 1946, 1947a; Mackin 
and Switzer, 1948), a remarkably perceptive report in 
1947 (Mackin, 1947b), the expanded text of his Gran-
ite Mountain map (Mackin, 1954), and a short paper 
in 1960, this last one with a junior author who was an 
outstanding economic geologist (Mackin and Ingerson, 
1960). Mackin called it the deuteric-release hypoth-
esis. Harold L. James, a friend and equally renowned 
(member of the National Academy of Sciences, a Chief 
Geologist of the USGS) economic geologist, stated in 
his memorial to Mackin that this hypothesis was “one 
of the finest contributions to the science of ore depos-
its of the past three decades” (James, 1974). It was not 
until much later (1995) that Daniel S. Barker, a young 
Professor at the University of Texas, was able to put to-
gether the geochemistry that made Mackin’s hypothesis 
a likely explanation. Barker took such a long time be-
cause he feared that he could not be objective, for he not 
only loved Mackin as we did but he married Barbara, 
Mackin’s beautiful daughter!

LOCATION
The geosite is in the southwestern part of The Three 

Peaks pluton, at the northern edge of the Cedar City 
NW 7.5-minute quadrangle, west of Cedar City, Iron 
County, Utah. The coordinates are: 37o44’53” N., 113o12’ 
01.32” W. A word of warning about the geosite—after 
a significant rainfall, the dirt road that allows the final 
access to the site is likely to become a mudhole. A four-
wheel drive vehicle may be necessary to reach the site 
and even such a vehicle might not be good enough!Past 
these mudholes and after the dirt road swings north, you 
will go past some blocky outcrops, first on the left, then 
on the right, of the peripheral shell of The Three Peaks 
pluton. This fresh, hard, fine-grained igneous rock is the 
chilled margin of the once intruding, semi-molten plu-
ton. From these outcrops it is 0.7 miles (1.1 km) farther 
north to the geosite. Before you reach it, you will pass 
mine dumps and two mine roads that head west to the 
Great Western mine, a shallow pit that mined a north-
east-trending “dike,” about 10 feet (3 m) wide, of mag-
netite. If you look south just before you reach the geo-
site, you will have a good view of Granite Mountain and 
big pits that were mined for iron at the intrusive contact 
(figure 3). A geologic map and stratigraphic column of 
the area is shown by figures 4 and 5.

GEOLOGIC SETTING
The Iron Springs mining district is in the Great Ba-

sin, a physiographic province west of the stable Colo-
rado Plateau and making up the western half of Utah 
and all of Nevada. The Great Basin was formed starting 
about 20 million years ago, when east-west regional ex-
tension (pulling apart in an east-west direction) creat-
ed north-trending basin-range normal faults that broke 
the Earth’s crust into north-trending ranges and alter-
nating north-trending basins. Most basin-range defor-
mation, however, has taken place since about 10 mil-
lion years ago, when the present topography began to 
be created (Anderson and Mehnert, 1979; Rowley and 
others, 1979, 1981, 2006; Rowley, 1998; Hurlow, 2002). 
The great north-trending Hurricane fault, which passes 
through the eastern edges of Cedar City and creates the 
Hurricane Cliffs south of Cedar City, marks the bound-
ary between the Great Basin and Colorado Plateau. It is 
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a normal fault with vertical, down-to-the-west displace-
ment of at least 6000 feet (1800 m) (Hurlow, 2002). Ce-
dar basin west of it is a typical north-trending basin, 
whereas the hills and mountains of, and south of, the 
Iron Springs district can be looked upon in aggregate 
as a typical north-trending range. A down-to-the-east 
normal fault zone that forms the western margin of 
Cedar basin chopped off the eastern side of The Three 
Peaks pluton and dropped it down so that it is now con-
cealed beneath basin-fill sediments.

The oldest rock unit exposed in the Iron Springs 
district is the Manganese Wash Member of the Temple 
Cap Formation of Early Jurassic age, an olive-colored 
sandstone and siltstone no more than 50 feet (15 m) 
thick. It exhibits hornfels-grade contact metamorphism 
in the district because it is in contact with the intru-
sions. The unit was originally assigned as the basal silt-
stone member of the Carmel Formation (Mackin, 1947, 
1954), but was reassigned following Sprinkel and others 
(2009, 2011) and Doelling and others (2013). Region-
ally, Temple Cap strata unconformably overlie Lower 
Jurassic Navajo Sandstone, a massive pink eolian (from 
sand dunes) sandstone about 2000 (600 m) feet thick. 
The Middle Jurassic Carmel Formation, which over-
lies the Temple Cap and is marine, consists of a lower 

Co-op Creek Limestone Member about 280 feet (85 m) 
thick and an upper Crystal Creek Member about 200 
feet (60 m) thick; upper members of the Carmel are cut 
out under the Cretaceous unconformity (Knudsen and 
Biek, 2014). The Co-op Creek Member was mineralized, 
whereas the Crystal Creek Member, a sandstone, was 
not. Overlying rocks include the enigmatic Marshall 
Creek Breccia (a possible sedimentary breccia) overlain 
by the Upper Cretaceous Iron Springs Formation, about 
3000 feet (1000 m) of mostly non-marine tan mudstone 
and sandstone and subordinate limestone, conglomer-
ate, and coal. Iron Springs strata are in turn overlain by 
the Eocene Claron Formation, generally pink in its low-
er part and white in its upper part, consisting of mostly 
fluvial but locally lacustrine mudstone, sandstone, lime-
stone, and conglomerate almost 2000 feet (600 m) thick; 
Claron strata are unusual in that they are mostly altered 
into a stacked sequence of paleosols (fossil soils). A se-
ries of volcanic rocks of Oligocene and Miocene age, 
virtually all ash-flow tuffs that erupted from calderas in 
the Great Basin, are almost 1500 feet (500 m) thick. All 
these rocks predated emplacement of the laccoliths and 
represent a total cover of only about 1.2 miles (2 km), 
so the laccoliths were intruded remarkably close to the 
surface. 

Figure 3. View south from the geosite toward the Granite Mountain pluton and the mined pits that surround it.
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The laccoliths of the Iron Axis rose above a large 
source batholith at depth, guided by the Iron Springs 
Gap thrust, one of the main Late Cretaceous to Pa-
leocene Sevier thrust faults in southwestern Utah. In 
the district, the thrust places Jurassic Temple Cap and 
Carmel strata over Cretaceous Iron Springs strata and 
provided a pathway for magma to migrate through the 
massive Navajo Sandstone. The laccoliths are 22 to 20 
million years old, slightly predating initiation of ba-
sin-range tectonism (Hacker, 1998; Rowley, 1998; Hack-
er and others, 2002, 2007; Rowley and others, 2006). As 
magma rose along the thrust fault it intruded beneath 
the Manganese Wash Member, then bulged it, the Car-
mel, and overlying rocks upward to form laccoliths (fig-

ure 6). The floor of the laccolith is largely the contact 
with the underlying Navajo. Each pulse of the laccolith 
magma (a liquid mush containing solid minerals that 
had crystallized) pushed up overlying rocks. Shallow 
intrusions such as this are called hypabyssal, and are 
common in mining districts in the West. 

Emplacement of Iron Springs intrusions was re-
markably rapid, such that the slab of Temple Cap and 
younger strata bulged faster than streams could erode 
them, and the slab grew rapidly into mountains with 
considerable relief. Inasmuch as some of these rocks 
were unstable mudstones (in the Iron Springs Forma-
tion) to begin with, the result of the growth of many of 
these mountains was gravity slides that resulted from 

Iron Spring Gap
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0 0.5 1 Mile

0 0.5 1 Kilometer

254

254

37.75 ° N.

113.19 ° W.113.225 ° W.

37.723 ° N.

Figure 4. Geologic map of the southern part of The Three Peaks intrusion and adjacent places, Iron County, Utah. The geosite 
is marked by a star. See figure 5 for map units. Gray areas show mined or disturbed ground with underlying geology from 
Mackin and others (1976) and Mackin and Rowley (1976). Modified from Knudsen and Biek (2014).
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failure of mudstone beds in the flanks of the lacco-
liths. The Iron Mountain intrusion, in fact, shed gravity 
slides at least 4 miles (6.5 km) to the south and south-
east (Mackin, 1960; Blank and Mackin, 1967; Hacker, 
1998; Hacker and others, 1996, 2002, 2007; Rowley and 
others, 2006). The Granite Mountain laccolith, imme-
diately south of The Three Peaks, also produced a small 
gravity slide off its southeastern flank (Knudsen and 
Biek, 2014). For some intrusions, although not the three 
mineralized ones, gravity slides took off part of the cov-

er rocks to breach the upward moving, partly molten in-
trusion (Hacker, 1998; Hacker and others, 2002, 2007), 
like popping the cork on a bottle of champagne and 
much like the gravity slide (“the bulge”) on the northern 
flank of Mount St. Helens, Washington, whose failure 
in 1980 was triggered by an earthquake, resulting in the 
May 18 eruption.

In his detailed mapping of The Three Peaks pluton, 
Mackin (1947b) paid particular attention to the joints 
within the intrusive rocks, and their comparison to flow 

A) Lateral sill migration Carmel Formation and 
overlying volcanic rocks

Navajo Sandstone< 1km

B) Vertical growth

Extension reduces lateral support

C) Gravity sliding from flanks

Gravity slide mass

Future slide

Figure 6. Schematic diagram illustrating growth of a typical laccolith. (A) Initial lateral migration of a sill within the Carmel 
Formation to its fullest extent at a relatively shallow depth, (B) vertical growth of the laccolith by continued injection of mag-
ma, and (C) gravity sliding of oversteepened flanks. Modified from Willis (2002) and Hacker and others (2002).
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foliation in the rock. He realized very quickly that joints 
were part of the story on how the hematite and mag-
netite ore bodies formed. The flow foliation, identified 
by the pattern of the phenocrysts in the rock, told him 
the directions that the crystal mush moved as it pushed 
upward and outward against the country rocks. When 
used in conjunction with careful mapping of the intru-
sive contacts, he identified not only bulges and folds of 
semi-solid magma at the contact but also places where the 
contacts were broken by this outward movement along 
intrusive faults. The flowage of the magma controlled 
the development of extension joints, and the tighter the 
folded magma, the more gaping were the joints. As in 
most plutons, joints were of three types based on their 
trend: (1) radial to a central part of the pluton (that is, 
perpendicular to the intrusive contacts), (2) concentric 
to the contact, and (3) oblique. These joints were exten-
sion joints, subvertical and widest (open) near intrusive 
contacts and tapered and terminating downward into 
the pluton. The joints related directly to the flow folia-
tion, indicating that they were extending as the crystal 
mush was flowing. In other words, the joints developed 
as the intrusive mass was solidifying but being pushed 
by younger magma pulses coming up the laccolith feed-
er. The higher the angle of the flow foliation, the more 
the magma was pushing outward against the intrusive 
contact and the more open were the extension joints. Of 
course, as the upper convex surface of the laccolith was 
growing and moving upward, closer to the surface, the 
upper parts of the molten mass expanded as the litho-
static pressure decreased.

Most plutons in the Iron Axis have three lithologic 
phases whose mapping suggested the deuteric-release 
hypothesis to Mackin (Mackin, 1947b, 1954, 1960, 
1968; Mackin and Ingerson, 1960; Mackin and others, 
1976; Mackin and Rowley, 1976; Rowley and Barker, 
1978; Barker, 1995; Rowley and others, 2006). These 
phases, from intrusive margin to interior, were the thin 
(less than 100 yards [30 m]) peripheral-shell phase, the 
selvage-joint phase, and the interior phase.  Chemically 
and petrologically, however, all phases are quartz mon-
zonite porphyry (phenocrysts of plagioclase and quartz 
and ferromagnesian minerals in a fine-grained crystal-
line mass), a rock type common in mineralized Tertiary 
plutons. 

The peripheral shell consists of resistant, fresh, 
fine-grained rock that represents the chilled margin 
of the pluton, whereby the semi-molten rock rapidly 
froze (consolidated) against the cool country rocks of 
the Temple Cap and Carmel Formations. In contrast, 
the interior phase is altered coarse-grained rock, easi-
ly eroded to lowlands. Here magmatic water (deuteric 
solutions) within the crystal mush altered the rock, in 
other words the mush “stewed in its own juices” and the 
phenocryst minerals broke down into alteration clays 
and other secondary minerals. At the shallow level in 
the crust where they had been emplaced, the rock was 
unstable because it had originated and partly crystal-
lized under deeper and hotter conditions in the source 
batholith. 

The selvage-joint phase is the interesting phase, 
for its story relates to the joint study. The word selvage 
comes from a border on a piece of cloth that is finished 
so as to prevent unraveling. Rock selvages are the bor-
ders of the extension joints, averaging about 2.5 inches 
(6 cm) wide on each side, containing rock that is deu-
terically altered (a reaction between primary magmat-
ic rock and water-rich solutions that separate from the 
magma during late-stage cooling). Farther away from 
the joints, however, the rock is fresh. Selvage rock re-
sembles that of all the interior phase. Chemical anal-
yses of the selvages shows that the rocks are depleted 
in iron by about 30 percent when compared with fresh 
rock inward from selvages, from peripheral shell rock, 
and—perhaps unexpectedly—from interior rock. Fur-
thermore, the extension joints in the selvage-joint phase 
contain magnetite crystals or crusts, giving Mackin the 
idea of where the iron-rich solutions or gases went 
(both liquids and gases are possible)! In places, closer 
to the intrusive contacts, where the magnetite “veins” 
were as much as 10 feet (3 m) wide, the extension joint 
opened progressively wider and wider with time, each 
time producing a magnetite coating. Iron-rich solu-
tions came from the breakdown (deuteric alteration) of 
ferromagnesian phenocrysts, especially biotite but also 
hornblende and pyroxene, in the solidifying crystalline 
mush of the selvage-joint phase. The extension joints, 
especially the radial joints, provided the avenue for es-
cape upward of the iron solutions. In contrast, joints 
were poorly developed and much less common in the 
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interior phase, and none contained selvages, so here the 
rocks entirely altered in place, contributing no iron to 
the ore bodies.

Intrusive faults formed where the outward and up-
ward pressure broke the rocks above rather than fold-
ing them. Many of these faults are reverse faults that dip 
inward into the pluton and provide a way that inward 
parts of the pluton push upward and flare outward. In-
trusive faults are important because they tapped the 
extension joints and provided the main escape for the 
solutions through the peripheral shell, which congealed 
rapidly and was largely solid while the rest of the pluton 
was a crystal mush. In fact, mapping showed that many 
of the ore bodies are found adjacent to intrusive faults. 
The largest ore body that was mined in the district was 
the Comstock body within the Iron Mountain intru-
sion, where intrusive faults created a graben of lime-
stone that dropped into the crystal mush. Once the iron 
solutions escaped the peripheral shell, they replaced the 
nearly adjacent Carmel limestone. 

A calculation of volumes of selvage rock indicated 
that all the huge hematite ore bodies could be account-
ed for as coming from selvage rock. The Three Peaks 
pluton had far fewer mineable hematite bodies because 
its roof was relatively flat (as indicated by flow folia-
tion), whereas the roof of the Granite Mountain pluton 
arched much more and hematite ore bodies surround 
parts of the intrusive contact. In the same way that a 
plate of plexiglass has more and larger extension cracks 
(and failure, the equivalent of intrusive faults) the more 
it is bent, greater arching of the solidifying magma 
produced more and larger extension joints. The Iron 
Mountain pluton, which has still higher structural relief 
(uplift and arching), contains the largest ore bodies in 
the district because its roof was especially peaked and 
bulged, and large intrusive faults cut pluton margins. 
Furthermore, no interior phase is exposed in these two 
plutons; nearly the entire exposed volume of the plutons 
is selvage-joint phase.

THE SITE ITSELF
As one stands in the dirt road, facing west at the geo-

site, you will see a cliff of light-gray selvage-joint-phase 
plutonic rock at least 50 feet (15 m) high (figure 7). It 

is cut by many vertical joints that trend west, the radial 
joints. Such a high concentration of joints characteriz-
es the selvage-joint phase. Close inspection reveals that 
light-green altered rock lines both sides of each joint. 
These are the selvages, with the light-green color com-
ing from altered ferromagnesian minerals. Yet inward 
from the selvages, the ferromagnesian minerals are 
fresh. Most of the joints are lined with magnetite crys-
tals. If you walk up into the saddle just north of the cliff 
face, you will see a magnetite “dike” about a foot wide. It 
grew incrementally from the edge to the middle as the 
joint opened up periodically due to new pulses of up-
ward- or outward-pushing crystal mush, and each time 
iron-bearing solutions moved vertically and laterally 
toward the intrusive contacts. Pale-yellow crystals of 
apatite, whose long axis is horizontal and normal to the 
controlling extension joint, are apparent. The top of the 
dike contains a fuzz of tiny magnetite fragments mag-
netically attached; the upper part of the dike is a natural 
magnet, called lodestone, due to lightning strikes (you 
may know that magnetite is high in iron and is attract-
ed to a magnet, but it does not attract iron by itself; an 
external energy source, such as lightening, is needed to 
align its molecules to make it into a magnet).

This geosite is significant because it illustrates how 
careful field observation in the course of detailed geo-
logic mapping resulted in a logical explanation of how 
huge, economically important iron-ore deposits likely 
formed. The deuteric-release hypothesis should be an 
idea that geologists carry around in their heads when 
they study other ore deposits of iron and other metals 
adjacent to other hypabyssal intrusions. 
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